Introduction

Recent advances in Next Generation Sequencing (NGS) technology, generate a large volume of genetic data which is now accessible for analysis. From raw data to published results, an efficient and automated pipeline for the analysis of genetic data will revolutionize modern research. Individual programs can be optimized and placed in a science gateway for researchers to customize their pipelines. The gateway provides the ability to upload data and an interface for users to select the desired command line parameters through graphical means. Additionally, the programs themselves are wrapped and scaled to large parallel architectures, improving the performance to a level that is out of reach for single machines or small clusters. In particular, the addition of reliable high performance computing (HPC) programs to the science gateways opens the doors to computational ability, even for scientists with little to no programming experience or resources.

 required to determine the significance of this finding.

The graphs above show the three datasets in relation to one another. The larger datasets showed higher percentages; however the general shape of each line is similar.

Future Goals

Future goals include:

- Extension of HSP-BLAST all v. all analysis
- Improved documentation for scientific programs
- Automated workflows and HSP implementation of additional tools
- Increased accessibility for computational tools through science gateways

In the future, the PoPLAR Gateway will be a comprehensive resource for the manipulation and analysi of genetic data. It will allow scientists to compete with the large amount of data generated by today's biological research, and create a user-friendly environment that accommodates rather than hinders those with little computational experience.

References
Howie, B. Genotype imputation for genome-wide association studies. Nature Reviens Genetics, 499-511
Hunter, J. Matplotlib: A 2D graphics environment. Computing In Science e Engineering, 9, 90-95.
MACH 1.0 - Markov Chain Haplotyping. (n.d.). MACH 1.0-Markov Chain Haplotyping. Retrieved from http://www.sph.umich.edu/csg/abecasis/ $\mathrm{MaCH} /$
Moreno-Hagelsieb, G., \& Latimer, K. (2007, November 26). Choosing BLAST options for better detection of orthologs as reciprocal best hits. BLAST options for better detection of orthologs as reciprocal best hits.
Rekapalli et al.: PoPLAR: Portal for Petascale Lifescience Applications and Rekapalic et al.: PoPLAR: Portal for Petascale Lifescie
Research. BMC Bioinformatics 2013 14(Suppl 9):S3.

OAK
RIDGE
Nationllabontory
THeUNIVERSITY of TENNESSEE 4

[^0]
[^0]: Mary Lauren Harris: Mary_L_Harris@baylor.edu
 Bhanu Rekepalli: bhanu@utk.edu
 Eduardo Ponce: eponcemo@utk.edu

