
Scientific Linraries

ACF Spring HPC Training Workshop
Match 15-16, 2016

Kwai Wong

Basic Computing Kennel (serial)
Basic Linear Algebra Subprograms(BLAS)

HPL (scalLAPACK) - Parallel Gausssian
Elimination

Ax = b
change A into A = L U in parallel

L

U
=A

so LUx = b
first solve Ly = b by direct downward solve

then solve Ux = y by direct upward solve

Basic Linear Algebra Subprograms (BLAS)

• BLAS is a library of standardized basic linear algebra
computational kernels created to perform efficiently on serial
computers taking into account the memory hierarchy of modern
processors.

• BLAS1 does vectors-vectors operations.
• Saxpy = y(i) = a* x(i) + y(i), ddot= S x(i) *y(i)

• BLAS2 does matrices - vectors operations.
• MV : y = A x + b

• BLAS3 operates on pairs or triples of matrices.
– MM : C = aAB + bC, Triangular Solve : X = aT-1X

• Level3 BLAS is created to take full advantage of the fast cache
memory. Matrix computations are arranged to operate in block
fashion. Data residing in cache are reused by small blocks of
matrices.

• Atlas, openBLAS, MKL, ESSL, libsci

MM Multiplication

• Simple MM - q = average number of flops per memory reference ~ 2

= + *

C(i,j) C(i,j) A(i,1:n)

B(1:n, j)

• Performance of MM can be improved by rearranging the order of
multiplication indices in column fashion in Fortran or in row fashion
in C.

= * BACi

j

i

k j

k

k - j - i ordering for FORTRAN

Analysis on MM
(www.cs.berkeley.edu/ /~demmel/cs267_Spr99/)

• To quantify the analysis, a simple model of two levels of memory hierarchy,
fast and slow, are used. All data initially resides in slow memory. Define
m = number of memory references to slow memory needed just to read

the input data from slow memory, and write the output data back
f = number of floating point operations
q = f/m = average number of flops per slow memory reference

• Hence, the higher is the value of q , the more efficient the algorithm
m = n^3 ---> read each column of B n times +

n^2 ---> read each row of A for each I +
2*n^2 ---> read/write each entry of C once --------> n^3 + 3* n^2

f = 2* n^3
q = f/m = (2* n^3) / (n^3 + 3* n^2) ~ 2

• Ideal value of q = n/2
ideal value of m = 4* n^2 ----> read each A(I,j), B(I,j), C(I,j) once,

write each C(I,j) once
hence, ideal value of q = f/m = n/2

Square blocked MM

• Consider C to be an n-by-n matrix of n/N-by-n/N subblocks Cij, with A and B
similarly partitioned.

for j = 1 : N
for j = 1 : N

Read Cij into fast memory
for k = 1 : N

Read Aik into fast memory
Read Bkj into fast memory

Cij = Cij + Aik * Bkj
end for
Write Cij back to slow memory

end for
end for

• The inner loop is an n/N-by-n/N matrix multiply. The fast memory is large enough
to hold the 3 subblocks Cij, Aik, and Bkj.
m = # memory refs = N * n^2 -----> read each Bkj N^3 times

+ N * n^2 ------> read each Aik N^3 times
+ 2 * n^2 --------> read/write each Cij once = (2 * N + 2) * n^2

Block MM

• q = f/m = (2*n^3) / ((2*N + 2) * n^2) ~ n / N
• If N is equal to 1, the algorithm is ideal. However, N is bounded by the amount of

fast cache memory. However, N can be taken independently to the size of matrix, n.
• The optimal value of N = sqrt (size of fast memory / 3)

= + *
Cij Cij Aik

Bkj

Cij Cij Aik Bkj= +
k

n

=
å
1

*

ATLAS
• Automatically Tuned Linear Algebra Software

• It generates a set of optimized linear algebra routines on
different computer architectures taking the advantages of their
specific memory hierarchies and pipelined functional units.

• In version 3.0, it supports all level of BLAS kernels as well as
some LAPACK routines.

• It also provides interfaces to standard C (need cblas.h) and
fortran 77.

• Prebuilt ATLAS for various computer architectures are readily
available on the web.

• Good for Linux Platform

• www.netlib.org/atlas

Linear Algebra Package
(LAPACK)

3/15/18 11

Gausssian Elimination

Ax = b
change A into A = L U

L

U
=A

so LUx = b
first solve Ly = b by direct downward solve

then solve Ux = y by direct upward solve

3/15/18 12

Gaussian Elimination

• For each column i, zero out the element below the diagonal by
adding multiples of row i to later rows

for i= 1 to n-1
for j = i+1 to n

for k = i to n
A(j,k) = A(j,k) - (A(j,i) / A(i,i)) * A(i,k)

0

0

0

0

0

0

…..0

After i=1 After i=2 After i=n-1

3/15/18 13

Gaussian Elimination (2)

(i,i) (i,k)

(j,i) (j,k)

column i column k

row i

row j
ACTIVE PART

A(j,k)=A(j,k)-m*A(i,k)

• To improve the implementation, the constant A(j,i) / A(i,i) is removed from the innermost
loop. Zeros below the diagonal is ignored

for i = 1 to n-1
for j = i+1 to n

m = A(j,i) / A(i,i) ----> m = A(j,i)
for k = i to n
A(j,k) = A(j,k) - m * A(i,k)

m = A(j,i) / A(i,i)--->A(j,i)

3/15/18 14

LAPACK (LU)

• The inner loop consists of BLAS1 and one BLAS 2 operations.

for i = 1 to n-1
for j = i+1 to n

A(j,I) = A(j,i) / A(i,i) <------ BLAS1 (to BLAS2)
for k = i+1 to n
A(j,k) = A(j,k) - A(j,i)* A(i,k) <----BLAS2 (to BLAS3)

=
(i,i) (i,k)

(j,i)A
(j,

i)

A(i,k)

A(j,k)-
A(j,i)*A(i,k)

(BLAS2)

(i,i)

j

ki A(j,k)
(update)

-

A
(j,

i) A(i,k)*A(j,k)

LAPACK GE Block Algorithm
• The block size of bk columns will depend on the machine architectures.

It is generally small enough so that bk columns currently used for
factorization fit in the fast memory of the machine, and bk is also large
enough to make matrix matrix multiplication perform effectively.

• The principle is the same as in the ordinary GE algorithm above. Instead
of working with one column, A(j,i) or one pivot entry, A(I,I), a block of
columns and a square block of matrix are used. Hence, BLAS1
operations will become BLAS2 operations, and BLAS2 operations will
become BLAS3 operation

choose a block size bk
for ib = 1 , n , bk

1) L U factorize the column block of bk
2) compute the pivoting block of rows
3) update the remaining block of the square matrix

LAPACK GE Block Algorithm

A11 A21 A13

A21 UU

LL
A23

A31 A32 A33

ib end

ib

end

bk

Completed part of U

C
om

pl
et

ed
 p

ar
t o

f L

I) Choose bk

II) for ib = 1 to n-1 step bk

Work the colored portion
of A

1) LU factorize A22+A32

A32 <--(UU, LL, A32)

2) Update A23 : triangular
solve

(A23) <-- LL \ A23

3) Update A33

A33 <-- (A33, A23, A32)

III) Triangular solve for
unknown

n

n

A22

A(end+1:n , end+1:n)

LAPACK GE Algorithm
Choose appropriate size for bk

for ib = 1 to n-1 step bk

point to the end of block of bk columns

end = min (ib+bk-1,n)

for I = ib to end

find and record k where

|A(k,i) | = max | A(j,i)|

if |A(k,i)| = 0, exit with a warning, A is singular

if I not equal to k, swap rows of i and k of A

A(i+1:n,i) = A(i+1:n,i) /A(i,i)

A(i+1:n,I+1:end) = A(i+1:n,i+1:end) - A(i+1:n,i)* A(i,i+1:end)

Let LL be the bk-by-bk lower triangular matrix whose subdiagonal entries are

stored in A(ib:end, ib:end), and with 1s on the diagonal. Do delayed update

of A(ib:end , end +1 : n) by solving n-end triangular system

A(ib:end,end+1:n) = LL \ A(ib:end, end+1 : n)

Do delayed update of the rest of matrix using matrix-matrix multiplication

A(end+1:n,end+1:n) = A(end+1:n,end+1:n)-

A(end+1:n,ib:end)*A(ib:end,end+1:n)

Example (1)

• Solve the following system of linear equations

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 5 0

=

18532
03222

32
832

34434
222

5431

5431

21

65432

654321

6431

-=+---
=--+-

=-
=---+-

-=+++-+
-=++-

xxxx
xxxx

xx
xxxxx

xxxxxx
xxxx

x1

x2
x3
x4
x5
x6

-2
-3
8
3
0

-18

Example (2)

• Choose the column block size bk = 2, so ib = 1, 3, and 5
• For b = 2, ib = 1, n = 6, end = 2

1) For i = ib to end (i = 1,2)
i = 1 a) A(i+1: n,I) = A(i+1: n, I) / A(i,i) => A(2:6, 1)=A(2:6, 1) / A(1,1)

A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, I) * A(i, i+1:end)
b) only update columns i+1 (2) to end (2) , so only column 2

A(2:6, 2:2) = A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)
i = 2 a) A(3:6, 1) = A(3:6, 1) / A(2, 2), since A(2,2) = 1 => DONE

4
0

2
-2
-2

/ 2 =

2
0

1
-1
-1

1a)

A(2:6,1) / A(1,1) = A(2:6,1)

1b) 1
-1

-1
0
0

2
0

1
-1
-1

0

- =

1
-1

-1
0
0

A(2:6, 2:2) - A(2:6, 1) * A(1, 2:2)= A(2:6,2)

Example (3)

• For bk = 2 , n = 6, end = 2, ib=1
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular system

A(1:2, 3:6) = LL \ A(1:2, 3:6)

LL =
1 0
2 1

UU= 2 0
0 1

1 0
2 1

? ? ? ?
? ? ? ?

-1 1 0 2
-3 4 1 4=

LL * new A(1:2, 3:6) = A(1:2, 3:6)

=> ? ? ? ?
? ? ? ?

A(1:2, 3:6)= -1 1 0 2
-1 2 1 0

=

Example (4)

• For bk = 2, ib = 1, n = 6, end = 2
2) Do delayed update of rest of matrix using matrix-matrix multiplication
A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end) *A(ib:end, end+1:n)

A(3:6, 3:6) = A(3:6, 3:6) -A(3:6, 1:2) * A(1:2, 3 : 6)

0

1
-1
-1

-1

-1
0
0

-1 1 0 2
-1 2 1 0 =

1 1 -2 -1
0 1 1 -2

1 -1 -3 2
-2 -2 -3 2

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 -1 -3 -1
0 0 0 0

2 -2 -3 0
-1 -3 -3 0

-

Example (5)

• Choose the column block size bk = 2, so ib = 1, 3, and 5
• For bk = 2, ib = 3, n = 6, end = 4

1) For I = ib to end (I = 3,4)
i= 3 a) A(i+1: n, i) = A(i+1: n, i) / A(i,i) => A(4:6, 3)=A(4:6, 3) / A(3,3)

b) only update columns i+1 (4) to end (4) , so only column 4
A(i+1:n,i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end)

A(4:6, 4:4) = A(4:6, 4:4) - A(4:6, 3) * A(3, 4:4)
i = 4 a) A(5:6, 4) = A(5:6, 4) / A(4, 4), A(4,4) = 1, => DONE

0
1

-2

/ 1 =
0
1

-2

1a)

A(4:6,3) / A(3,3) = A(4:6,3)

1b) 1

-1
-2

0
1

-2

1
-

=

1
-2

0

-2

0

-2

0
/ 1 = 2a) A(5:6,4) = A(5:6,4)/A(4,4)

A(4:6,4)-A(4:6,3) * A(3,4)=A(4:6,4)

Example (6)

• For bk = 2 , n = 6, end = 2, ib=3
2) Do delayed update of A(ib:end, end+1:n) by solving n-end triangular

system
A(3:4, 5:6) = LL \ A(3:4, 5:6)

LL =
1 0
0 1

UU= 1 1
0 1

1 0
0 1

? ?
? ?

=

LL * new A(3:4, 5:6) = A(3:4, 5:6)

=> ? ?
? ?

A(3:4, 5:6)= -2 -1
1 -2

=

-2 -1
1 -2

Example (7)

• For bk = 2, ib = 3, n = 6, end = 2
2) Do delayed update of rest of matrix using matrix-matrix multiplication
A(end+1:n, end+1:n) = A(end+1:n, end+1:n) -A(end+1:n, ib:end)*A(ib:end, end+1:n)

A(5:6, 5:6) = A(5:6, 5:6) -A(5:6, 3:4) * A(3:4, 5 : 6)

-2 -1
1 -2

1 -2
-2 0

-3 2
-3 2

- * =
1 -1
1 0

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -2 1 -1
-1 0 -2 0 1 0

Example (8)

• For bk = 2, ib = 5, n = 6, end = 6
1) For i = ib to end (i = 5,6)

i= 1 a) A(i+1: n,i) = A(i+1: n, i) / A(i,i) => A(6, 5)=A(6, 5) / A(5,5)
b) only update columns i+1 (2) to end (2) , so only column 2

A(i+1:n, i+1:end) = A(i+1:n, i+1:end) - A(i+1:n, i) * A(i, i+1:end)
A(6, 6) = A(6, 6) - A(6, 5) * A(5, 6)= 1 => DONE

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -1 -3 2
-1 0 -2 -2 -3 2

2 0 -1 1 0 2
2 1 -1 2 1 0
0 -1 1 1 -2 -1

1 -1 0 1 1 -2

-1 0 1 -2 1 -1
-1 0 -2 0 1 1

Example (9)

=

2 0 -1 1 0 2
4 1 -3 4 1 4
0 -1 2 -1 -3 -1

2 -1 0 0 0 0

-2 0 2 -2 -3 0
-2 0 -1 -3 -3 0

1 0 0 0 0 0
2 1 0 0 0 0
0 -1 1 0 0 0

1 -1 0 1 0 0

-1 0 1 -2 1 0
-1 0 -2 0 1 1

2 0 -1 1 0 2
0 1 -1 2 1 0
0 0 1 1 -2 -1

0 0 0 1 1 -2

0 0 0 0 1 -1
0 0 0 0 0 1

*

A L U= *

Solve Ax = b
=> L U x = b

=> L y = b , U x = y

For j = 1 to n
y(j) = b(j)
for j = 1 to n-1
y(j) = y(j) / L(j,j)

for i = j+1 to n
y(i) = y(i) - y(j)*L(i,j)

Triangular Solve

-2
-3
8
3
0
-18

-2
-3
8
3
0
-18

-2
1
8
5
-2
-20

-
21
8
5
-2
-20

-2
1
9
6
-2
-20

-2
1
9
6
-2

-20

-2
1
9
6

-11
-2

-2
1
9
6

-11
-2

-2

1
9
6
1

-2

-2
1
9
6
1

-2

-2
1
9
6
1
-3

-2
1
9
6
1
-3

b 1) y 2) y 3) y 4) y 5) y 6) y 7) y 8) y 9) y 10) y 11) y

1
-1
0
2
-2
-3

2
-1
0
2
-2
-3

2
-1
0
2
-2
-3

2
-1
0
2
-2
-3

2
-1
0
2
-2
-3

2
-1
0
2
-2
-3

4
3
2
2

-2
-3

2

4
3
2

-2
-3

4

1
6
0
-2
-3

4
1
6
0
-2

-3

-2
1
9
6
1
-3

-2
1
9
6
1

-3

x 11) x 10) x 9) x 8) x 7) x 6) x 5) x 4) x 3) x 2) x 1) x

LAPACK GE Solver

• Driver subroutine to compute the solution of a real system of linear
equations, Ax=b

• SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
– N : The order of the matrix A
– NRHS : The number of right hand side, the number of columns of b
– A : matrix A, dimension (LDA, N), on entry, the NxN coefficient matrix A, on

exit, the factors L and U from factorization
– LDA : The leading dimension of the array A
– IPIV : The pivot indices that define the permutation matrix P
– B : On entry, the right hand side of b, on exit, the solution x
– LDB : The leading dimension of the array b,
– INFO : output info, 0 = successful exit

• The DGESV subroutine calls the DGETRF subroutine which does
the LU factorization and the DGETRS which solves the triangular
systems.

Scalable Linear Algebra Package
(ScaLAPACK)
www.netlib.org/scalapack

Data Layout

• ScaLAPACK is an extension of the LAPACK subroutines to
perform on distributed memory parallel computers or a network
of workstations running PVM or/and MPI.

• Data layout of matrices on processors will strongly affect the
performance of an algorithm. There are primarily four ways to
partition a matrix

• Row-wise block or column-wise block partitioning

• Row-wise block cyclic or column block cyclic partitioning

• 2D block block partitioning

• 2D block cyclic partitioning

Data Distribution

• Column Blocked Layout:
– In this layout, a block of columns of matrix A is stored per processor as

shown below.
– This layout has the same disadvantage of the row-wise stripe partition

because as soon as the first few columns have completed the elimination,
the processors storing those columns remain idle for the rest of the
elimination process.

• Column Block Cyclic Layout :
– This layout tries to address the problem of load balancing by assigning

blocks of columns of matrix A to processors in a cyclic fashion. However,
this layout has the disadvantage that the factorization of A(ib:n, ib:end) will
take place perhaps in just one processor. This would be a serial bottleneck

Column block Layout Column Block Cyclic layout

2D Block Cyclic Layout

• The Row and Column (2D) Block Cyclic Layout will be a good
compromise between the Block and Cyclic Layouts. It will
alleviate the problem of load balancing and avoid the
situation of a serial bottleneck. Two dimensional block
structures allows efficient implementation of BLAS3 update
of A(ib;end , end+1:n)

2D Block Cyclic Layout

0 0 0

0 0 0

0 0 0

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

3 3 3

3 3 3

ScaLAPACK
(www.netlib.org/scalapack)

• ScaLAPACK (version 1.7) is an extension of LAPACK using PVM or MPI
on parallel computers.

• It chooses 2D block cyclic data distribution to optimize BLAS3 operations.

• It is composed of LAPACK, BLAS, PBLAS, and BLACS.

• The BLACS, Blasic Linear Algebra Communication Subprograms, are a
message passing library designed for linear algebra.

• PBLAS is a set of parallel basic linear algebra subroutines similar to BLAS.

• There are four basic steps to call a ScaLAPACK routine.
– Initialize the process grid (BLACS)

– Distribute the matrix on the process grid (DESCINIT)

– Call ScaLAPACK driver routine

– Release the process grid (BLACS)

Solve a System of Equations

• General matrix factorization
– call PDGETRF(M, N, A, IA, JA, DESC_A, IPVT, INFO)

• General matrix solve
– call PDGETRS(TRANSA, N, NRHS, A, IA, JA, DESC_A, IPVT,

B, IB, JB, ESC_B, INFO)

1
1

18532
03222

32
832

34434
222

8

7

5431

5431

21

65432

654321

6431

=
=

-=+---
=--+-

=-
=---+-

-=+++-+
-=++-

x
x

xxxx
xxxx

xx
xxxxx

xxxxxx
xxxx

2D Block Cyclic Distribution (Scalapack)

• Consider an 8 x 8
system of linear
equations using a 2D
blocked cyclic data
distribution

• Matrix A is first
decomposed into 2x2
blocks starting at its
upper left corner, bk=2.

• These blocks are then
uniformly distributed
across a 2x2 processor
grid, nprow = npcol =2.

• There are 4 processes
in the 2D process grid,
nbrow = nbcol = 2.

A(1,1)
2

A(1,2)
0

A(1,3)
-1

A(1,4)
1

A(1,5)
0

A(1,6)
2

A(2,1)
4

A(2,2)
1

A(2,3)
-3

A(2,4)
4

A(2,5)
1

A(2,6)
4

A(3,1)
0

A(3,2)
-1

A(3,3)
2

A(3,4)
-1

A(3,5)
-3

A(3,6)
-1

A(4,1)
2

A(4,2)
-1

A(4,3)
0

A(4,4)
0

A(4,5)
0

A(4,6)
0

A(5,1)
-2

A(5,2)
0

A(5,3)
2

A(5,4)
-2

A(5,5)
-3

A(5,6)
0

A(6,1)
-2

A(6,2)
0

A(6,3)
-1

A(6,4)
-3

A(6,5)
5

A(6,6)
0

A(1,7)
0

A(1,8)
0

A(2,7)
0

A(2,8)
0

A(3,7)
0

A(3,8)
0

A(4,7)
0

A(4,8)
0

A(5,7)
0

A5,8)
0

A(6,7)
0

A6,8)
0

A(7,7)
1

A(7,8)
0

A(8,7)
0

A(8,8)
1

A(7,1)
0

A(7,2)
0

A(7,3)
0

A(7,4)
0

A(7,5)
0

A(7,6)
0

A(8,1)
0

A(8,2)
0

A(8,3)
0

A(8,4)
0

A(8,5)
0

A(8,6)
0

Data Distribution on Local Processors

A(1,1)
2

A(1,2)
0

A(1,5)
0

A(2,1)
4

A(2,2)
1

A(2,5)
1

A(5,1)
-2

A(5,2)
0

A(5,5)
-3

A(1,3)
-1

A(1,4)
1

A(1,7)
0

A(2,3)
-3

A(2,4)
4

A(2,7)
0

A(5,3)
2

A(5,4)
-2

A(5,7)
0

A(3,1)
0

A(3,2)
-1

A(3,5)
-3

A(4,1)
2

A(4,2)
-1

A(4,5)
0

A(7,1)
0

A(7,2)
0

A(7,5)
0

A(3,3)
2

A(3,4)
-1

A(3,7)
0

A(4,3)
0

A(4,4)
0

A(4,7)
0

A(7,3)
0

A(7,4)
0

A(7,7)
1

Process grid (0,0) Process grid (0,1)

Process grid (1,0) Process grid (1,1)

A(16)
2

A(2,6)
4

A(5,6)
0

A(6,1)
-2

A(6,3)
0

A(6,5)
5

A(6,6)
-3

A(1,8)
0

A(2,8)
0

A(5,8)
0

A(6,3)
-1

A(6,4)
3

A(6,7)
0

A(5,8)
0

A(3,6)
-1

A(4,6)
0

A(7,6)
0

A(8,1)
0

A(8,2)
0

A(8,5)
0

A(8,6)
0

A(3,8)
0

A(4,8)
0

A(7,8)
0

A(8,3)
0

A(8,4)
0

A(8,7)
0

A(8,8)
1

• The leading dimension of local
process grid, LLD, are the same
(in this case) and is equal to 4

• The number of rows of matrix A
that a process own (in this case)
is 4.

• The number of columns of
matrix A that a process own is
4.

• Process (0,0) is chosen as the
process containing the first
matrix entry in its local
memory, thus, the process row
over which the first row of
matrix A is distributed,
RSRC=0, and process column
over which the first column of
matrix A is distributed, CSRC=0

3/15/18 37

ScaLAPACK GE Subroutine

• ScaLAPACK is composed of LAPACK, BLAS, PBLAS, and BLACS.
• The BLACS, Blasic Linear Algebra Communication Subprograms, are

a message passing library designed for linear algebra.
• PBLAS is a set of parallel basic linear algebra subroutines similar to

BLAS.
• There are four basic steps to call a ScaLAPACK routine.

– Initialize the process grid
– Distribute the matrix on the process grid
– Call ScaLAPACK driver routine
– Release the process grid

• BLACS routines are used to initialize the process grid
• A ScaLAPACK tools routine, DESCINIT, can be used to distribute the

matrix layout (or Iinitializes the Descriptor)
• A ScaLAPACK routine is called to perform a specific task
• A BLACS routine is then used to release the process grid

3/15/18 38

Distributed GE (1st sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)

3/15/18 39

Distributed GE (2nd sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)

3/15/18 40

Distributed GE (3rd sweep)

Step (1), (2), (3), (4) Step (7), (8)

Step (9) Step (10), (11)

41

ScaLAPACK Linear Solver

• All global matrices must be distributed on the process grid prior
• CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, LLDA, INFO)
• CALL DESCINIT(DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT, LLDB, INFO)

Call the solver routine
• CALL PDGESV(N,NRHS,A,IA,JA,DESCA,IPIV,B,IB,JB,DESCB,INFO)
• CALL PDGETRF, CALL PDGETRS

Release the process grid
• CALL BLACS_GRIDEXIT(ICONTXT)
• CALL BLACS_EXIT(0)

Data Distribution

Process grid initialization
CALL BLACS_PINFO(MYID, NPROCS)

! Initialize the process grid, obtain system default context
CALL BLACS_GET(-1,0,ICTXT)

! Map the available processes to a BLACS process grid
CALL BLACS_GRIDINIT(ICTXT,’Row-major’,NPROW,NPCOL)

! Query the process grid to identify each process’s coordinate, (MYROW, MYCOL)
CALL BLACS_GRIDINFO(ICTXT,NPROW,NPCOL,MYROW,MYCOL)

SCALAPACK Exercise

• TRAINING/MPI_WORKSHOP/Fortran/SCALAP
ACK

• Use PE-Intel MKL library. Makefile-intel
• Use PE-gnu MKL Library, Makefile-gnu
• https://software.intel.com/en-us/articles/intel-mkl-

link-line-advisor
• Use PE-gnu Scalapack, lapack, ATLAS, Makefile-

scal
• mpirun –np 4 ./xdlu < LU.dat

HPL Exercise

• TRAINING/MPI_WORKSHOP/C/HPCC
• tar zxvf hpl-2.2.tar.gz
• cd hpl-2.2
• cp setup/Make.Linux_Intel64 .
• Use PE-intel MKL Library, Makefile
• Change TOPdir to your current directory in

Make.Linux_Intel64, use ‘pwd’ to show your
current directory

• Make arch=Linux_Intel64
• mpirun –np 4 ./xhpl

Krylov Subspace Solvers in Parallel
Matrix Vector Multiple (HPCG)

PETSc, HYPRE, TRILINOS

Iterative Methods
• Iterative methods are generally used to solve system of equations which is too

large to be handled by direct methods. Iterative methods do not guarantee a
solution for every system of equations. However,, when they do yield a
solution, they are usually less expensive than direct methods.

• A sequence of approximations to the solution vector is usually generated by
performing a matrix vector multiplication to the iterative matrix T or A matrix

• Iterative methods can be expressed in the simple form, xk = T xk-1 + c .
There are two main types of iterative methods, stationary iterative methods and
non-stationary iterative methods, dependent on the nature of T and c during the
iteration process.

• Traditional iterative methods such as Jacobi, Gauss Siedel, and SOR methods
are stationary methods which are applicable to limited problems.

• Conjugate Gradient methods and Conjugate Gradient look-alike methods
which are known as Krylov Subspace Method are the most widely used
iterative methods nowadays.

);(),,,(00
1

0
2

0,0 rAKrArAArrFx ii
i Î= -!

Iterative Methods

1100

1233

122

11

11

1)(

)(
))((

)(

-

--

--

-

++++=
=

+++=
++=

+=
-+=
-+=

+-=
=--

--=
-==

ii

iiii

iii

ii

ii

ii

rrrxx

rrrx
rrx

rx
Axbx
xAIbx

MethodIterative
bxAIx
bxAII

AIIAwrite
AxbrbAx

!
" },,,,{

)()(

)(

)(

0;

0
1

0
2

00

0
1

00

0

1

11

11

11

11

01100

rArAArrx
rAIrAIxx

rAIr
rAIr
Arrr

ArAxbAxb
ArAxAx
rxx

xrrrxx

i
i

i
i

i
i

ii

iii

iii

iii

iii

ii

-

-

-

--

--

--

--

-

Î

-++-+=

-=

-=
-=

--=-
+=

+=
=++++=

!

!

!

);(),,,(00
1

0
2

0,0 rAKrArAArrFx ii
i Î= -!

Conjugate Gradient Method

• The value of iterates x is actually a function of initial value of x and power of
matrix vector product of residual r and matrix A. We call that Krylov Subspace,
and thus x belongs to the Krylov Subspace.

• Conjugate Gradient method is to find an x by systemically searching through the
Krylov Subspace. Minimization of the residuals in the Krylov Subspace produce
sequences of values of a and p which build the value of x.

• In every iteration of the method, the approximate solution x is updated with
respect to a search direction,p, multiple by a constant a, x= x + a p. Minimization
of the error lead to a specific choice of a and p which can be efficiently
constructed in a three term recursion relation.

kkk

kkk

kkk

kk

kkk

pr
pAxb
pxAb

Axbr
pxx

a
a
a

a

-=
+-=
+-=

-=
+=

-

-

-

-

1

1

1

1

)(
)(

k
T
k

k
k

k

kk
kk

App
r

r
prrp

brp

2
21

2
21

2
2

1

01

||||

||||
||||

-

-
+

=

+=

==

a

and

CG Algorithm – A Parallel Solver (MV)

i = 0
x(0) = 0
r(0) = b - A*x(0) = b
f(0) = rT(0)r(0)
while (f(i) > tolerance) and (i < maximum iteration)
do

if (i = 0) then p(1) = r(0)
else p(i+1) = r(i) + f(i)*p(i) / f(i-1)
i = i + 1
- matrix-vector multiplication
w(i) = A*p(i)
- vector dot product
a(i) = f(i-1) / pT(i)*w(i)
x(i) = x(i-1) + a(i)*p(i)
r(i) = r(i-1) - a(i)*w(i)
- vector dot product
f(i) = rT(i)*r(i)

end while
x = x(i)

Libraries for Sparse Matrices

3/15/18 50

Storage Schemes of Sparse Matrix

• There are a lot of different sparse matrix storage schemes. We will introduce a few common
types which can be used for general sparse matrix. Sparse storage generally consists of
several vectors which stores the nonzero values of the matrix and pointers of location of the
nonzero values. Obviously, the most logical and efficient storage scheme for this block
tridiagonal matrix will be the Diagonal Storage scheme. The scheme stores the values of the
matrix using individual vector array for each diagonal and a position pointer relative to the
main-diagonal of the matrix.

10

9

8

7

6

5

4

3

0

0
2

-4

0

-3

0

-2

-1
-1

-1

1

1

1

aval(:,1)=(0,0,0,1,1,1) , apos(1)=-3
aval(:,2)=(0,-4,0,-3,0,-2), apos(2)=-1
aval(:,3)=(10,9,8,7,6,5), apos(3)=0
aval(:,4)=(4,0,3,0,2,0), apos(4)=1
aval(:,5)=(-1,-1,-1,0,0,0), apos(5)=3

Matrix vector product:
do I=1,N

do k=1,5
w(I) = w(I) + aval(I,k) * p(I-apos(k))
enddo

enddo

Coordinate Storage Scheme

• The Coordinate Storage scheme consists of three vector arrays, one stores the
nonzero values, one stores the row locations of the nonzero entries, and the last
one stores the the column locations of the nonzero entries. The order of storing
the nonzero entries can be arbitrary, however, rowwise or columnwise storing
orders are used for computing efficiency. As can be observed later, storage of
one of the location pointer can be reduced.

10

9

8

7

6

5

4

3

0

0
2

-4

0

-3

0

-2

-1
-1

-1

1

1

1

Coordinate Storage Scheme:
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
irow(I) = (1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6)
jcol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)

Matrix vector multiplication
do i=1,N

w(irow(i))=w(irow(i)+aval(i)*p(icol(I))
end do

Compressed Row and Column Storage Schemes
• The Compressed Row Storage (CRS) scheme put the subsequent non-zeros of the matrix row

in contiguous memory locations. Three vectors are used. One contains the values of the
nonzero entries (aval), one stores the column number of each nonzero entries (icol), and the
last one stores the pointers to the first entry of the ith row in aval and icol (jprow)

• The Compressed column Row Storage (CCS) scheme is identical to CRS scheme except the
matrix nonzero entries are stored in columnwise fashion.

• Due the structural symmetry of the following example, the position indicators of the CRS and
CCS are the same!

10

9

8

7

6

5

4

3

0

0
2

-4

0

-3

0

-2

-1
-1

-1

1

1

1

Compressed Row Storage:
aval(I) = (10,4,-1,-4,9,-1,8,3,-1,1,-3,7,1,6,2,1,-2,5)
icol(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)
jprow(I) = (1,4,7,10,13,16,19)

Compressed Column Storage:
aval(I) = (10,-4,1,4,9,1,8,-3,1,-1,3,7,-1,6,-2,-1,2,5)
jrow(I) = (1,2,4,1,2,5,3,4,6,1,3,4,2,5,6,3,5,6)
ipcol(I) = (1,4,7,10,13,16,19))

3/15/18 53

Matrix Vector Product for CRS and
CCS

• Compressed Row Storage : w=A*p
do I=1,NROW

w(I)=0
do j = jprow(I), jprow(I+1) -1

w(I) = w(I) + aval(j) * p(icol(j))
end do

end do

• Compressed Row Storage

Do I=1,NROW
w(I)=0

end do
do I=1,NCOLUMN

do j = ipcol(I), ipcol(I+1) -1
w(jrow(j)) = w(jrow(j)) + aval(j) * p(I)

end do
end do

Example – 1D Diffusion Problem

• A ten meters long iron rod is supported at both ends by two water tanks as
shown. The temperatures of the water in the banks are maintained at 100C and
0C. The temperature, T(I), at any point on the iron rod is approximated by the
average value of the temperatures of its neighboring points, i.e. T(1) = (T(0) +
T(2))/2. As a result, the temperature of the iron rod at any location of x can be
represented by the following system of equations.

100C 0C

x=0 x=101 2 3 4 5 6 7 8 9

T(0) = 100, T(1)={T(2)+T(0)}/2, T(2)={T(3)+T(1)}/2,
T(3)={T(2)+T(4)}/2 T(4)={T(3)+T(5)}/2, T(5)={T(4)+T(6)}/2,
T(6)={T(5)+T(7)}/2, T(7)={T(6)+T(8)}/2, T(7)={T(6)+T(8)}/2,
T(8)={T(7)+T(9)}/2, T(9)={T(8)+T(10)}/2, T(10)=0

Resultant Matrix

1
2

2

2
2

2

2
2

2
2

1

-1-1
-1 -1

-1-1
-1 -1

-1-1
-1-1

-1 -1
-1 -1

-1 -1

T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10

=

100
0
0
0
0
0
0
0
0
0
0

A x b

Solve A x = b02

2

=
dx
td

FEM

P0

P1

P2

CG in Parallel

100C 0C
0 1 2 3 4 5 6 7 8 9 10

Processor 0 Processor 2

Processor 1

k
T
kk

k
T
kk

kk

rr
wp

Apw

=

=

=

f

b
k

T
kk

k
T
kk

kk

rr
wp

Apw

=

=

=

f

b

k
T
kk

k
T
kk

kk

rr
wp

Apw

=

=

=

f

b

1
2

2

2

-1-1
-1 -1

-1-1

2
2

2

-1-1
-1 -1

-1-1

2
2

2

-1-1
-1 -1

-1-1
1

A
A

A

3/15/18 PICMSS Tutorial 57

2D Heat Equation
• The one dimensional equation can be generalized to a two dimensional case.

Approximation of the derivatives by Taylor’s series is carried out with respect to x
and y similarly as before.

)(2

2

2

2

y
u

x
uc

t
u

¶
¶

+
¶
¶

=
¶
¶

U=100

U=0

U=0

3/15/18 58

2D Heat Equation FD Formulation

• A 2D square plate is discretized uniformly in x and y directions with Dx=
Dy=h, and the time step Dt=k, the second derivation of the u at any grid
points with respect to x and y can be approximated by the average value of
the neighbors in the north, south, west, and east directions.

2
,1,1,,1,1

2
2

2

2

2

/)4()(hUUUUUu
y
u

x
u

jijijijiji -+++»Ñ=
¶
¶

+
¶
¶

+-+-

• Hence, the 2D Forward Euler’s formula is

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

UzzUzUzUzUU
h

UUUUU
k
UU

,1,1,,1,1
1

,

2
,1,1,,1,1,

1
,

)41(

)4(

-++++=Þ

-+++
=

-

+-+-
+

+-+-
+

• The 2D Backward Euler’s formula is

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

UUzzUzUzUzU
h

UUUUU
k
UU

,
1

,
1
1,

1
1,

1
,1

1
,1

2

1
,

1
1,

1
1,

1
,1

1
,1,

1
,

)41(

)4(

-=+-+++Þ

-+++
=

-

++
+

+
-

+
+

+
-

++
+

+
-

+
+

+
-

+

3/15/18 59

Resultant matrix

• The 2D Crank-Nicholson scheme will be the average of the explicit and implicit
Euler’s schemes.

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji

bUzUUUUz

UzUUUUz

,
1

,
1
1,

1
1,

1
,1

1
,1

1
,

1
1,

1
1,

1
,1

1
,1

)21()(
2

)21()(
2

=--+++-

=+-+++

++
+

+
-

+
+

+
-

++
+

+
-

+
+

+
-

8:0;

0

0

8,

7,

1,

0,

1
8,

1
7,

1
1,

1
0,

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

--

--

+

+

+

+

i

b
b

b
b

U
U

U
U

I
CAC

CAC
I

m
i

m
i

m
i

m
i

m
i

m
i

m
i

m
i

!!"""

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

-+-

-+-
=

10
2/212/

2/212/
01

zzz

zzz
A !!!

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

1
2/

2/
1

z

z
C !

matrix
identityI =

• The result is a block tridiagonal matrix as shown below. Each block is a 9x9 matrix.

3/15/18 60

2D Domain Decomposition
• The 2D grid is decomposed into four sections with overlapped grid points, each of

them assigned to a processor.
Processor2 Processor3

Processor0 Processor1

2D domain decomposition

3/15/18 61

Parallel Implementation of Explicit Scheme

m
ji

m
ji

m
ji

m
ji

m
ji

m
ji UzzUzUzUzUU ,1,1,,1,1
1

,)41(-++++= +-+-
+

For m = 1 to M
For Black Dot

For m = 1 to M
For Black Dot

For m = 1 to M
For Black Dot

For m = 1 to M
For Black Dot

Processor2 Processor3 Processor 0 Processor 1

End

update
boundary
values

End For m

End

update
boundary
values

End For m

End

update
boundary
values

End For m

End

update
boundary
values

End For m

3/15/18 PICMSS Tutorial 62

Parallel Implementation of Implicit Scheme
• Gaussian elimination can be used to solve the linear system of equation resulting from

the Backward Euler’s or Crank Nicholson schemes. LAPACK and ScaLAPACK
provide a band solver subroutine for solving such system of equations. Iterative solvers
such as the Jacobi ,SOR, and Conjugate Gradient methods can also be used.

• If only the steady solution of the problem is sought. The time dependency, the partial
derivative with respect to time, can be eliminated. The result is a 2D Laplace equation.

• The one dimensional Laplace equation was examined earlier. The resulting matrix of
the 2D equation is block tridiagonal as shown below.

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

--

--

8,

7,

1,

0,

8,

7,

1,

0,

0

0

i

i

i

i

i

i

i

i

b
b

b
b

U
U

U
U

I
IAI

IAI
I

!!"""

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

--

--
=

10
141

141
01

!!!A
matrix
identityI =

02

2

2

2

=
¶
¶

+
¶
¶

y
u

x
u

jijijijijiji bUUUUU ,,1,1,,1,1 4 =+---- +-+-

Conjugate Gradient Method

ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

-
--

--
--

--
--

-

7,

6,

5,

4,

3,

2,

1,

7,

6,

5,

4,

3,

2,

1,

i

i

i

i

i

i

i

i

i

i

i

i

i

i

b
b
b
b
b
b
b

U
U
U
U
U
U
U

TI
ITI

ITI
ITI

ITI
ITI

IT

ú
ú
ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

-
--

--
--

--
--

-

=

41
141

141
141

141
141

14

T
matrix
identityI =

• Conjugate gradient method can be used to solve the system of equations. To
make the matrix symmetric, the boundary values are incorporated to the right
hand side, only the interior nodes will be used. As a result, the system matrix will
be as follows.

3/15/18 PICMSS Tutorial 64

2D CG Calculations in Parallel

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

1 2 3 4

6 7 21 22

28 29 30 31

37 38 39 40 41

43 44 45 46

5

23

32

row0

row1

row2

row3

row4

row5

3/15/18 65

Global Matrix Data Distribution

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

3/15/18 66

Matrix Vector Multiplication

* =

R
ow

 1
R

ow
 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Matrix A

Correct value of A*p product
has to include red dot values. Hence
matrix A of processor 0 should include
extra value on the domain partition
for the calculation.

Vector p Product A*p

3/15/18 67

CG Parallel Implementation for 2D Laplace Equation

Processor2 Processor3Processor 0 Processor 1

012111

00000

/
1;)(

;;;0;0

rporprp
kkdowhile
bigrrbrxk

kkkkk

T

=+=
+=>
=====

---- ff
ef

ef

k
T
kk

kk

wp
Apw

=

=

b

kkkkkkkkkkk wrrpxx aabfa -=+== --- 111 ;;/

k
T
kk rr=f

k
T
kk

kk

wp
Apw

=

=

b k
T
kk

kk

wp
Apw

=

=

b k
T
kk

kk

wp
Apw

=

=

b

kxxwhileend =;

k
T
kk rr=f k

T
kk rr=f k

T
kk rr=f

3/15/18 68

Example Grid (5x5)

2;0;0 -=W== vu
0 1 2 3 4

98765

10 11 12 13 14

15

20

16

21

17

22

18

23

19

24

0=
¶
¶
x
u

0=
¶
¶
x
v

0=
¶
W¶
x

2;0;0 =W== vu

y
v

yu

2
0

)1(2

=W
=

-=

E0 E1 E2 E3

E4

E8

E12

E5

E9

E13

E6 E7

E10 E11

E14 E15

x

y

69

Parallel FE Assembly, Example, 5 x 5 Mesh :
Process 0

0 1 2 3 4

98765

10 11 12 13 14

15

20

16

21

17

22

18

23

19

24

P0

P1

P2

P4

P3

E0 E1 E2 E3

X X X X
X X X X X X

X X X X X X
X X X X X X

X X X X

0

0

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

Process 0
Process Grid : 0, 1, 2, 3, 4
Element : E0, E1, E2, E3
Compute Grid:

0,1,2,3,4,5,6,7,8,9

Process 0
Process Grid : 0, 1, 2, 3, 4
represents global matrix
row 0, 1, 2, 3, 4

3/15/18 70

Parallel FE Assembly, Example, 5 x 5 Mesh :
Process 1

0 1 2 3 4

98765

10 11 12 13 14

15

20

16

21

17

22

18

23

19

24

P0

P1

P2

P4

P3

E0 E1 E2 E3

X X X X
X X X X X X
X X X X X X X X X

X X X X X X X X X
X X X X X X X X X

X X X X X X

0

4

1 2 3 4 5 6 7 8 9 10

5

6

7

8

9

10

Process 1
Process Grid : 5, 6, 7, 8, 9
Element : E0, E1, E2, E3,

E4, E5, E6, E7
Compute Grid:

0,1,2,3,4,5,6,7,8,9,10
11,12,13,14

Process 1 , Process Grid : 5, 6, 7, 8, 9 represents global matrix row 5, 6, 7, 8,
9

E4 E5 E6 E7

11 12 13 14

3/15/18 PICMSS Tutorial 71

Distributed Global GWS FE Matrix Structure
X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X

X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X

X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X

X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Store x only in
P0

Store x only in
P1

Store x only in
P2

Store x only in
P3

Store x only in
P4

Global to Local Representations

15 16 17 18 19

2423222120P4
E12 E13 E14 E15

10 11 12 13 14

1918171615

20 21 22 23 24

P3
E8 E9 E10 E11

E12 E13 E14 E15

5 6 7 8 9

1413121110

15 16 17 18 19

P2
E4 E5 E6 E7

E8 E9 E10 E11

0 1 2 3 4

98765

10 11 12 13 14

P1
E0 E1 E2 E3

E4 E5 E6 E7

0 1 2 3 4

98765

P0
E0 E1 E2 E3

0 1 2 3 4

98765P4
E0 E1 E2 E3

0 1 2 3 4

98765

10 11 12 13 14

P3
E0 E1 E2 E3

E4 E5 E6 E7

0 1 2 3 4

98765

10 11 12 13 14

P2
E0 E1 E2 E3

E4 E5 E6 E7

0 1 2 3 4

98765

10 11 12 13 14

P1
E0 E1 E2 E3

E4 E5 E6 E7

0 1 2 3 4

98765

P0
E0 E1 E2 E3

Aztec Representation (DMSR)

15 16 17 18 19

2423222120P4
E12 E13 E14 E15

10 11 12 13 14

1918171615

20 21 22 23 24

P3
E8 E9 E10 E11

E12 E13 E14 E15

5 6 7 8 9

1413121110

15 16 17 18 19

P2
E4 E5 E6 E7

E8 E9 E10 E11

0 1 2 3 4

98765

10 11 12 13 14

P1
E0 E1 E2 E3

E4 E5 E6 E7

0 1 2 3 4

98765

P0
E0 E1 E2 E3

Process 0
nupdate = 5 ; iupdate = {0, 1, 2, 3, 4}
ibindx = {6, 9, 14, 19, 24, 27,

1, 5, 6,
0, 2, 5, 6, 7,
1, 3, 6, 7, 8
2, 4, 7, 8, 9
3, 8 9 }

Process 2
nupdate = 5 ; iupdate = {10, 11, 12, 13, 14}
ibindx = {6, 11, 19, 27, 32,

5, 6, 11, 15, 16
5, 6, 7, 10, 12, 15, 16, 17
6, 7, 8, 11, 13, 16, 17, 18
7, 8, 9, 12, 14, 17, 18, 19
8, 9, 13, 18 ,19}

Unstructured Grid

2;0;0 -=W== vu
4 9 1 0

23105

6 11 21 20 19

7

8

12 18

17

16

15

14

13

0=
¶
¶
x
u

0=
¶
¶
x
v

0=
¶
W¶
x

2;0;0 =W== vu

y
v

yu

2
0

)1(2

=W
=

-=

E2 E1 E0

E5

E9

E13

E3

E7 E6

E11 E10

x

y

E4
E8

E12

Parallel Finite Element Mesh

4 9 1

3105

6 11 21
20

7

8

12 18

17

E2 E1

E5

E9

E13

y

E4
E8

E12 2310

11 21 20 19

7

8

12 18

17

16

15

14

13
E13

E3

E7 E6

E11 E10

x

y

E4
E8

E12

9 1 0

2310

21 20 19

E1 E0

E3
x

E4

Process 1

Process 0

Process 2

Non-Lexicographic Grid Partitioned for 3 Processors

3/15/18 76

Domain Decomposition with METIS*

Mesh: 22,797 nodes and 119,210 elements
Partitioned into 20 domains

*METIS: A Software Package for
Partitionng Unstructured Graphs,
Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices,
Version 4.0, G. Karypis and V. Kumar,
University of Minnesota, Dept. of Computer
Science, Minneapolis, MN, September 20,
1998.

ptw 3/5/01

77

The End

Quote: “I think there is a world market for maybe five computers”
Thomas Watson, chairman of IBM, 1943

