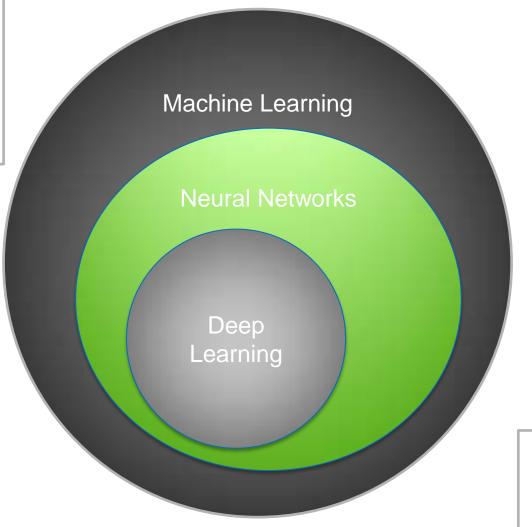
Deep Learning and GPUs Intro and hands-on tutorial

Julie Bernauer - HPC Advisory Council Stanford Tutorial - 2017/02/07

ML, Neural Nets and Deep Learning

Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959).



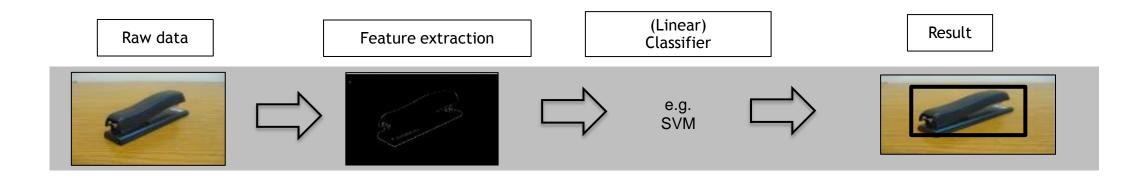
from https://en.wikipedia.org/wiki/Machine_learning

An artificial neural network (ANN) learning algorithm, usually called "neural network" (NN), is a learning algorithm that is inspired by the structure and functional aspects of biological neural networks.

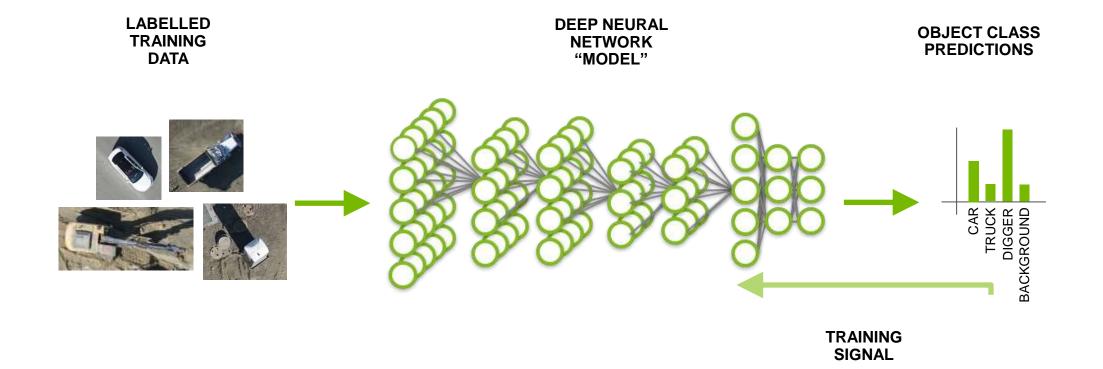
Deep learning [...] consists of multiple hidden layers in an artificial neural network

Object Recognition

Traditional Machine Learning / Computer Vision Approach

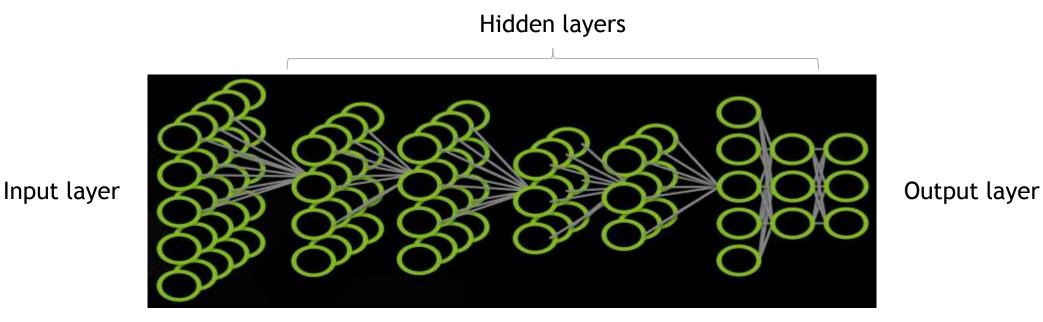


Object recognition The Deep Learning Approach



Artificial Neural Network

A collection of simple, trainable mathematical units that collectively learn complex functions

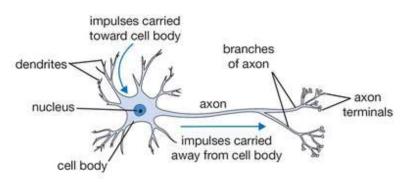


Given sufficient training data an artificial neural network can approximate very complex functions mapping raw data to output decisions

Artificial Neuron

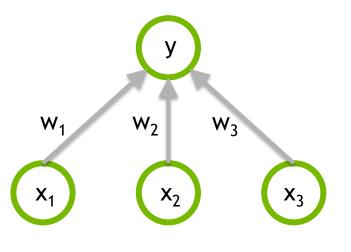
Mathematical Unit

Biological neuron



From Stanford cs231n lecture notes

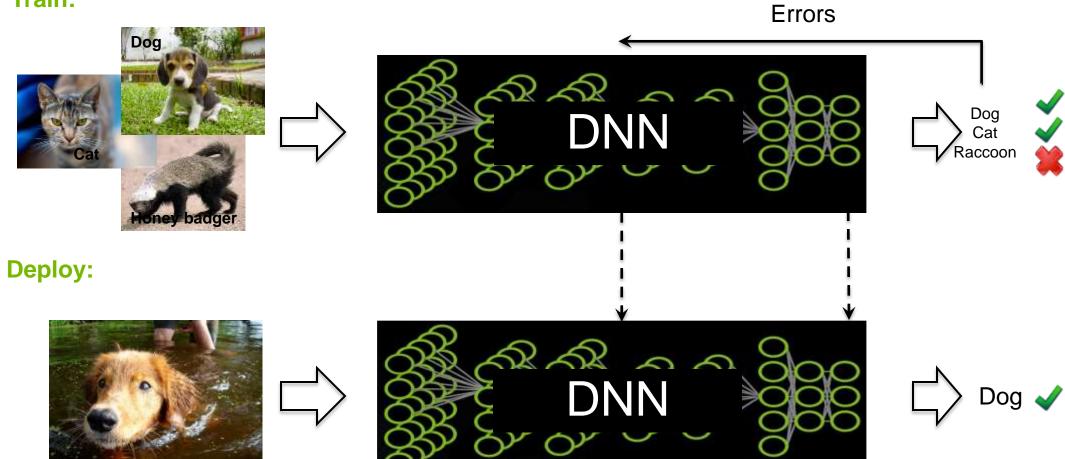
Artificial neuron



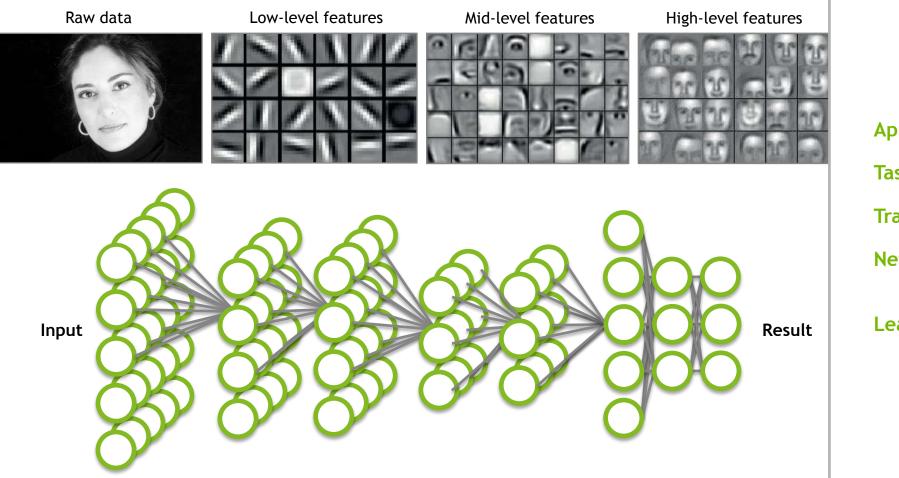
 $y=F(w_1x_1+w_2x_2+w_3x_3)$

Deep Learning Approach

Train:



Deep Neural Network (DNN)



Application components:

Task objective e.g. Identify face Training data 10-100M images Network architecture ~10s-100s of layers 1B parameters Learning algorithm ~30 Exaflops 1-30 GPU days

THE BIG BANG IN MACHINE LEARNING

"Google's AI engine also reflects how the world of computer hardware is changing. (It) depends on machines equipped with GPUs... And it depends on these chips more than the larger tech universe realizes."

Deep Learning Benefits

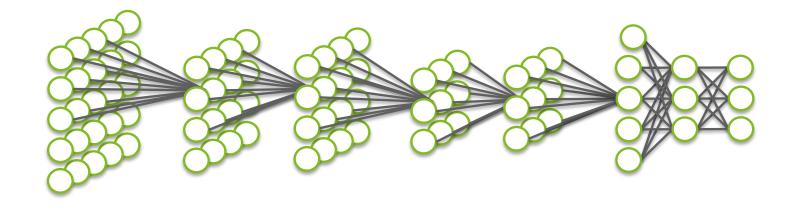
- Robust
 - No need to design the features ahead of time features are automatically learned to be optimal for the task at hand
 - Robustness to natural variations in the data is automatically learned
- Generalizable
 - The same neural net approach can be used for many different applications and data types
- Scalable
 - Performance improves with more data, method is massively parallelizable

Three main kinds of networks

DNN - all fully connected layers

CNN - some convolutional layers

RNN - recurrent neural network, LSTM



Neural Network In practice

Interpret AI task as the evaluation of complex function

Facial Recognition: Map a bunch of pixels to a name

Handwriting Recognition: Image to a character

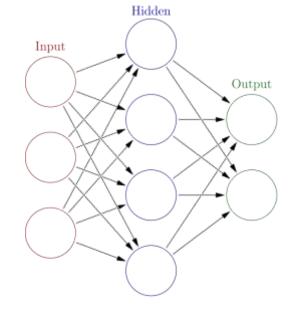
Neural Network: Network of interconnected simple "neurons"

Neuron typically made up of 2 stages:

Linear Transformation of data

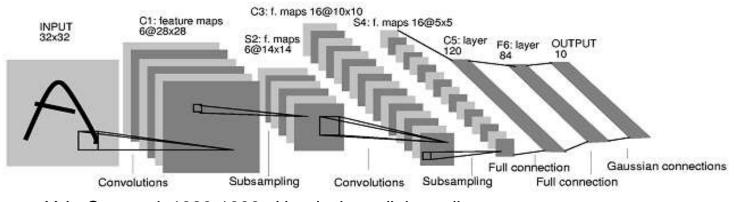
Point-wise application of non-linear function

In a CNN, Linear Transformation is a convolution

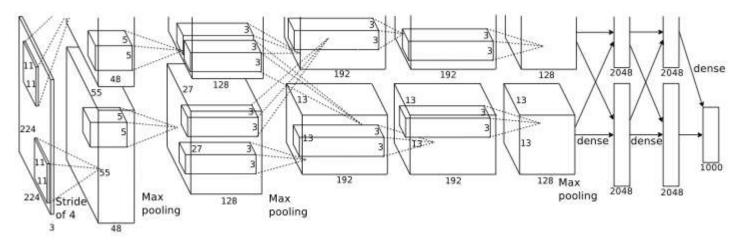


https://en.wikipedia.org/wiki/ Artificial_neural_network

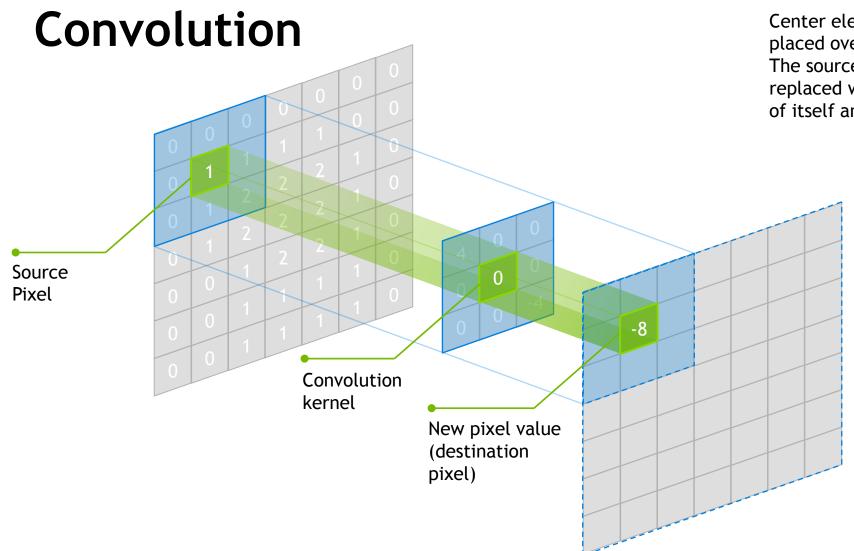
Convolutional Networks breakthrough



Y. LeCun et al. 1989-1998 : Handwritten digit reading

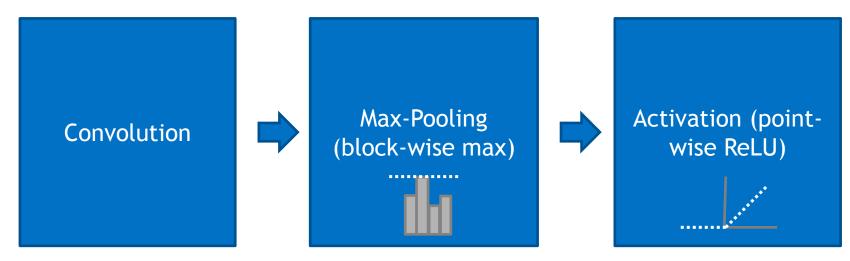


A. Krizhevsky, G. Hinton et al. 2012 : Imagenet classification winner



Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

CNNs: Stacked Repeating Triplets



OverFeat Network, 2014

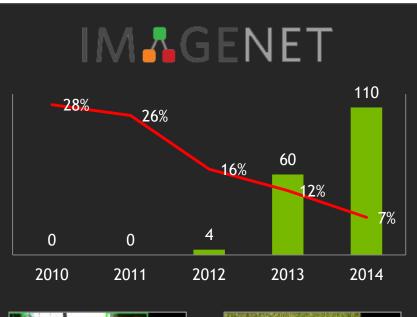
Layer	1	2	3	4	5	6	7	8	Output 9
Stage	conv + max	conv + max	conv	conv	conv	conv + max	full	full	full
# channels	96	256	512	512	1024	1024	4096	4096	1000
Filter size	7x7	7x7	3x3	3x3	3x3	3x3	-	-	-
Conv. stride	2x2	1x1	1x1	1x1	1x1	1x1	-	-	-
Pooling size	3x3	2x2	1 4	() 4 ()		3x3	-	-	-
Pooling stride	3x3	2x2	1 2	-	÷.	3x3	<u> </u>	1.2	-
Zero-Padding size	-	-	1x1x1x1	1x1x1x1	1x1x1x1	1x1x1x1		-	-
Spatial input size	221x221	36x36	15x15	15x15	15x15	15x15	5x5	1x1	1x1

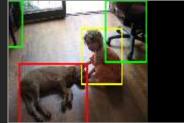
Why are GPUs good for deep learning?

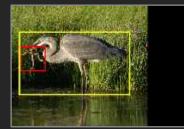
	Neural Networks	GPUs
Inherently Parallel	\checkmark	\checkmark
Matrix Operations	\checkmark	\checkmark
FLOPS	\checkmark	\checkmark

► GPUs deliver --

- prediction accuracy
- faster results
- smaller footprint
- lower power







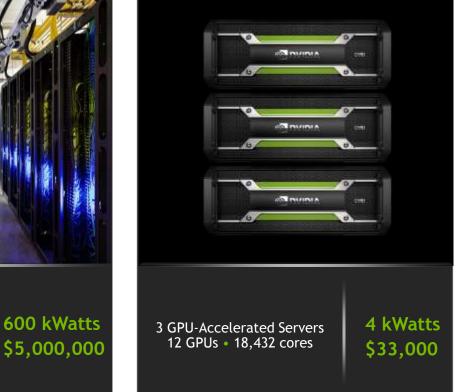
Compute Platform

ACCELERATING INSIGHTS

Now You Can Build Google's \$1M Artificial Brain on the Cheap "

WIRED

STANFORD AI LAB

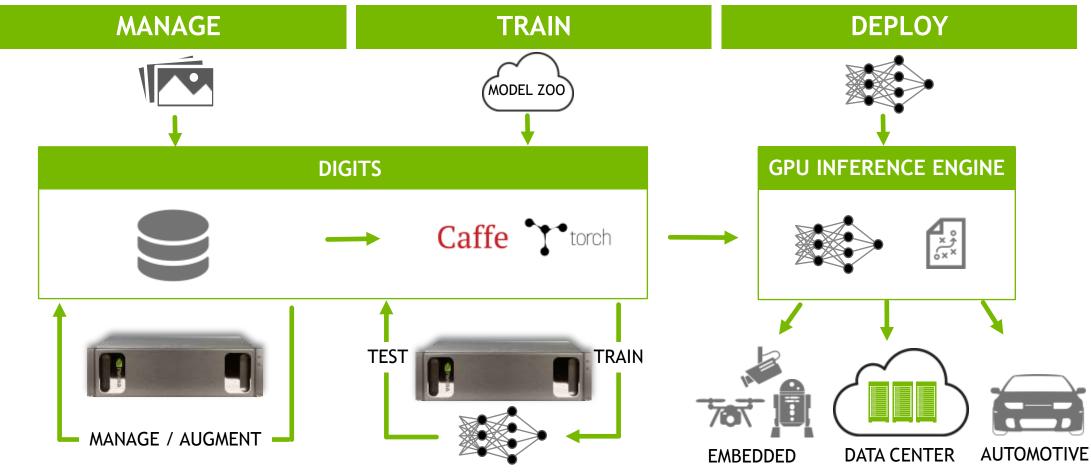


1,000 CPU Servers

2,000 CPUs • 16,000 cores

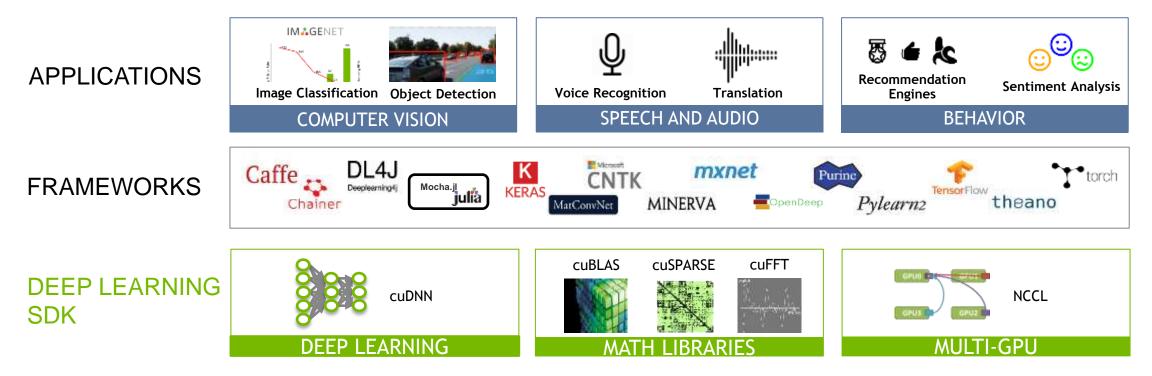
Deep Learning Workflow

A complete GPU-accelerated workflow



NVIDIA Deep Learning SDK

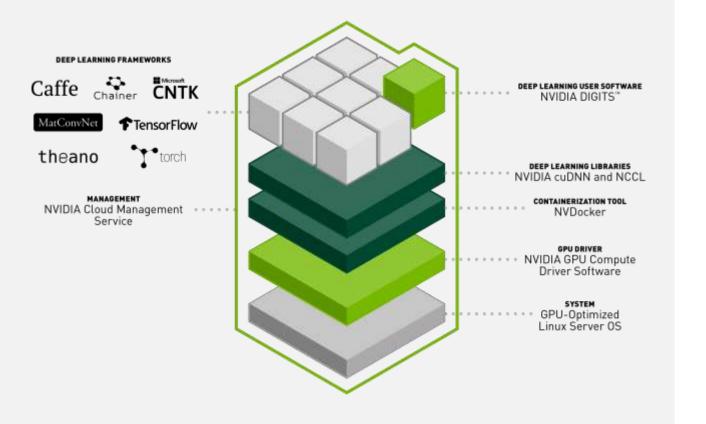
High Performance GPU-Acceleration for Deep Learning



DGX-1 Al Supercomputer-in-a-Box

2x Xeon | 8 TB RAID 0 | Quad IB 100Gbps, Dual 10GbE | 3U - 3200W

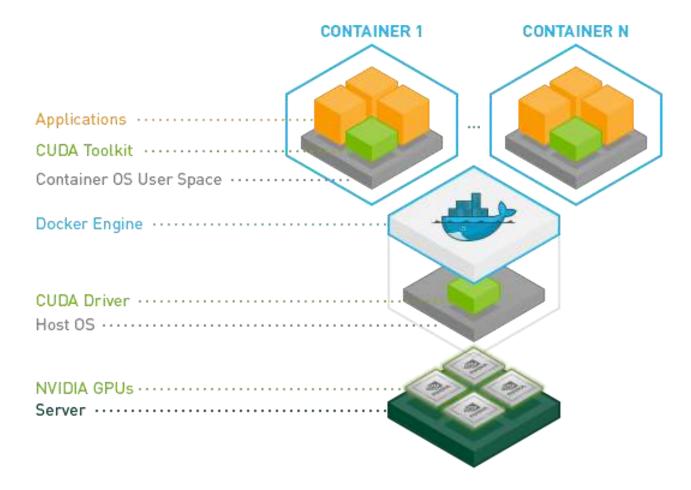
DGX-1 DL STACK



Performance optimized across the entire stack

Mixed framework environments – containerized

NVIDIA DOCKER Containers



NVIDIA cuDNN

Accelerating Deep Learning

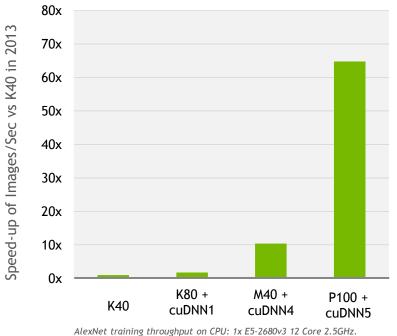
High performance building blocks for deep learning frameworks

Drop-in acceleration for widely used deep learning frameworks such as Caffe, CNTK, Tensorflow, Theano, Torch and others

Accelerates industry vetted deep learning algorithms, such as convolutions, LSTM, fully connected, and pooling layers

Fast deep learning training performance tuned for NVIDIA GPUs

Deep Learning Training Performance Caffe AlexNet



"NVIDIA has improved the speed of cuDNN with each release while extending the interface to more operations and devices at the same time."

M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

128GB System Memory, Übuntu 14.04

Caffe

An open framework for deep learning developed by the Berkeley Vision and Learning Center (BVLC)

- Pure C++/CUDA architecture
- Command line, Python, MATLAB interfaces
- Fast, well-tested code

caffe.berkeleyvision.org http://github.com/BVLC/caffe

- Pre-processing and deployment tools, reference models and examples
- Image data management
- Seamless GPU acceleration
- Large community of contributors to the open-source project

Caffe features

Data pre-processing and management

Data ingest formats

LevelDB or LMDB database

In-memory (C++ and Python only)

HDF5

Image files

Pre-processing tools

LevelDB/LMDB creation from raw images

Training and validation set creation with shuffling

Mean-image generation

Data transformations

Image cropping, resizing, scaling and mirroring

Mean subtraction

Caffe features

Deep Learning model definition

Protobuf model format

Strongly typed format

Human readable

Auto-generates and checks Caffe code

Developed by Google

Used to define network architecture and training parameters

No coding required!

```
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
       num output: 20
       kernel size: 5
       stride: 1
       weight filler {
              type: "xavier"
```

Caffe features

Deep Learning model definition

Loss functions:

Classification

Softmax

Hinge loss

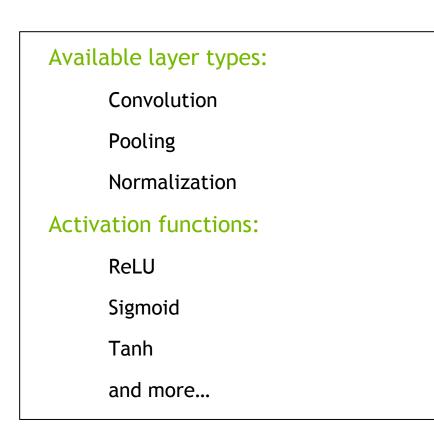
Linear regression

Euclidean loss

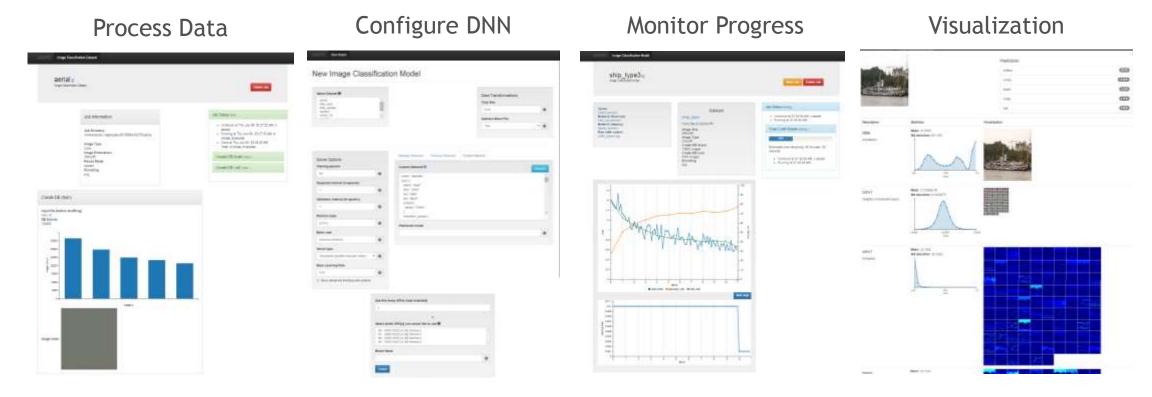
Attributes/multi-classification

Sigmoid cross entropy loss

and more...

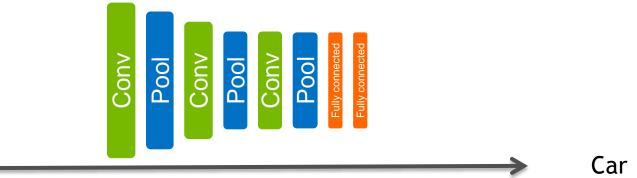


Interactive Deep Learning GPU Training System

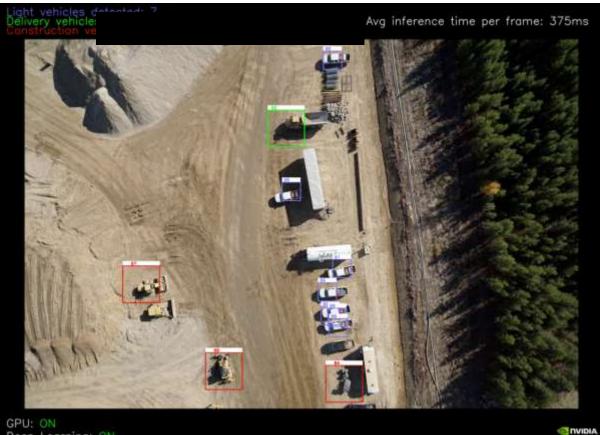


DL examples

Object classification



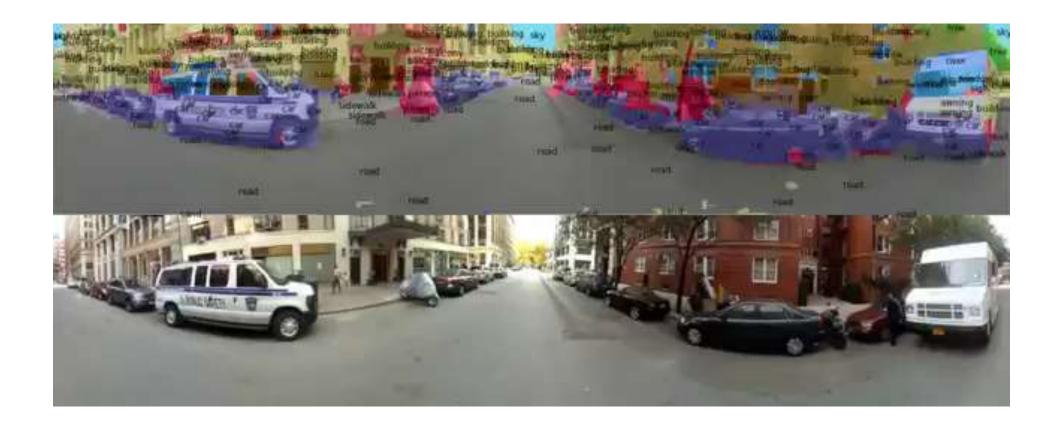
From object classification to object detection



Deep Learning: ON

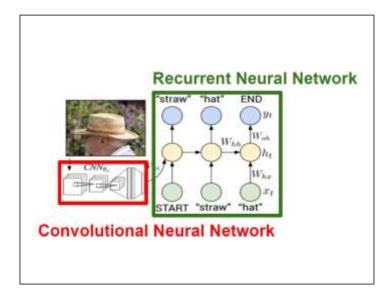
More complex examples

Segmentation



Clement Farabet, Camille Couprie, Laurent Najman and Yann LeCun: Learning Hierarchical Features for Scene Labeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, August, 2013 https://www.youtube.com/watch?v=KkNhdlNs13U

Captioning



"Automated Image Captioning with ConvNets and Recurrent Nets"- Andrej Karpathy, Fei-Fei Li

Text generation RNNs

VIOLA:

Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Generation GANs

NVIDIA @nvidia · Apr 5 Left: 20k images fed into a neural network. Right: the computer paints it's own pictures w/simple guidelines #GTC16

https://code.facebook.com/posts/1587249151575490/a-path-to-unsupervised-learning-through-adversarial-networks/

Selecting your lab(s)

Four labs available today On nylabs.gwiklab.com

- 1. Getting Started with Deep Learning (DIGITS, simple classification)
- 2. Introduction to Deep Learning (python, caffe, DIGITS, classification)
- 3. Approaches to Object Detection using DIGITS (python, DIGITS, detection)
- 4. NVIDIA-Docker (cuda, MNIST, Tensorflow, in a container)

Connection Instructions

Navigate to http://nvlabs.qwiklab.com

Login or create a new account

Select the "Instructor-Led Hands-on Labs" Class

Find the lab called "Getting Started with Deep Learning", select it, click Select, and finally click Start

Please ask Lab Assistants for help!

Connection Instructions

≡ qwik LABS	IN SESSION ④		TAKEN ③				MY ACCOUNT Sign out
Rate Lab: Gett	ing Started with D	eep Learning		Au.		End	TIME REMAINING 02:24:00
Lab Instructions		Click here		Connect	Lab Connection Please follow the lab instructions to conner Warning: Please do not transmit any da that are not related to qwikLABS® or the Connection Clic: here to aunch your lab.	ata into the AWS resou	e taking.
							Support

Lab1: Getting Started with DL

Goal

- Learn about the workflow of Deep Learning
- Train your own Convolutional Neural Network using Caffe and DIGITS to identify handwritten characters
- Try several different methods to improve initial results to understand the iterative nature of training and optimizing Deep Neural Networks

Handwritten Digits Recognition

HELLO WORLD of machine learning?

MNIST data set of handwritten digits from Yann Lecun's website

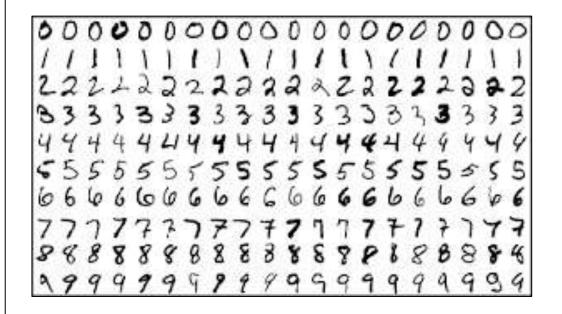
All images are 28x28 grayscale

Pixel values from 0 to 255

60k training examples, 10k test examples

Input vector of size 784

Output value is integer from 0-9



Outline Steps

How to use DIGITS10 minTraining with larger dataset10 minData augmentation10 minModifying network10min

Dataset Setup

Login :

Use lower case letters.

Dataset settings

- Image Type : Grayscale
- Image Size : 28 x 28
- Training Images: /home/ubuntu/data/train_small
- Select "Separate test images folder" checkbox
- Test Images : /home/ubuntu/data/test_small
- Dataset Name : MNIST Small

Model Setup

- Select the "MNIST small" dataset
- Set the number of **"Training Epochs"** to 10
- Set the framework to "Caffe"
- Set the model to "LeNet"
- Set the name of the model to "MNIST small"
- When training done, Classify One :

/home/ubuntu/data/test_small/2/img_4415.png

First results Small dataset (30 epochs)

- 96 % of accuracy achieved.
- Training is done within one minute.

	SMALL DATASET
1	1:99.90 %
2	2:69.03%
3	8:71.37 %
4	8:85.07 %
7	0:99.00%
8	8:99.69%
10/3/2010	8:54.75%

Full dataset

6x larger dataset

Dataset

Training Images : /home/ubuntu/data/train_full Test Image : /home/ubuntu/data/test_full Dataset Name : MNIST full

Model

Clone "MNIST small".

Give a new name "MNIST full" to push the create button.

Second results

Full dataset (30 epochs)

- 99 % of accuracy achieved.
- No improvements in recognizing real-world images.

	SMALL DATASET	FULL DATASET
1	1:99.90 %	0:93.11%
2	2:69.03 %	2:87.23 %
3	8:71.37 %	8:71.60%
4	8:85.07 %	8:79.72%
7	0:99.00 %	0:95.82 %
8	8:99.69%	8:100.0%
8	8:54.75%	2:70.57 %

10/3/2016

Data augmentation

Adding inverted images

DIGI	TS Image (Classification D	ataset		smo	rino (Logout)	Info +
Exp	Exploring MNIST invert (train_db) images						
Show all	images or fi	Iter by class: (1 2 3	45678	9		
Items pe	er page: 10 - 25	- 50 - 100					
< 0	1 2 3	4 5	3600	26			
R		9		2		3	
	2	54 7746	9		7	10122	3
(4		6		5	
	1		4		6		5
5		3		8		2	
	5		3		8		2
3		1		8		6	
-13 - 189	3		1	(A)(A)	8	201-124	6

Pixel(Inverted) = 255 - Pixel(original)

White letter with black background -> Black letter with white background.

Training Images : /home/ubuntu/data/train_invert

Test Image : /home/ubuntu/data/test_invert

Dataset Name : MNIST invert

Data augmentation

Adding inverted images (30 epochs)

	SMALL DATASET	FULL DATASET	+INVERTED
1	1:99.90 %	0:93.11%	1:90.84%
2	2:69.03 %	2:87.23 %	2:89.44%
3	8:71.37 %	8:71.60%	3:100.0 %
4	8:85.07%	8:79.72 %	4:100.0 %
行為	0:99.00%	0:95.82 %	7:82.84%
8	8:99.69%	8:100.0%	8:100.0%
8	8:54.75%	2:70.57 %	2:96.27 %

Modifying the network

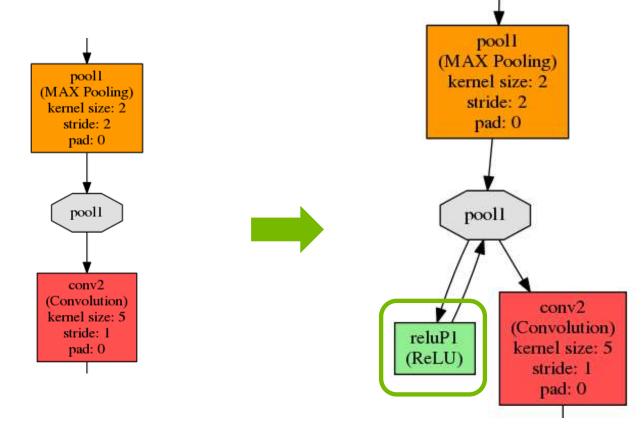
Adding filters and ReLU layer

```
layer {
        name: "pool1"
        type: "Pooling"
        ...
}
layer {
        name: "reluP1"
        type: "ReLU"
        bottom: "pool1"
        top: "pool1"
layer {
        name: "reluP1"
```

```
layer {
  name: "conv1"
  type: "Convolution"
     . . .
    convolution_param {
    num output: 75
     . . .
layer {
    name: "conv2"
    type: "Convolution"
     . . .
    convolution param {
    num_output: 100
     . . .
```

Modifying the network

Adding ReLU Layer



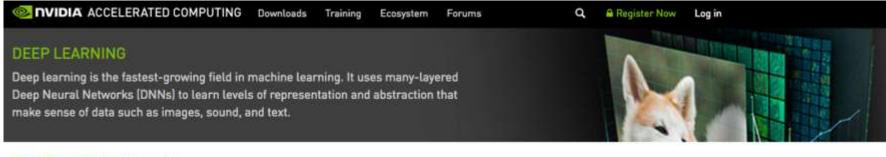
Modified network

Adding filters and ReLU layer (30 epochs)

	SMALL DATASET	FULL DATASET	+INVERTED	ADDING LAYER
1	1:99.90 %	0:93.11%	1:90.84 %	1:59.18%
2	2:69.03 %	2:87.23 %	2:89.44%	2:93.39%
3	8:71.37 %	8:71.60%	3:100.0 %	3:100.0 %
4	8:85.07 %	8:79.72%	4:100.0 %	4:100.0%
7	0:99.00 %	0:95.82 %	7:82.84 %	2:62.52%
8	8:99.69%	8:100.0%	8:100.0%	8:100.0%
8	8:54.75 %	2:70.57 %	2:96.27 %	8:70.83%

GETTING STARTED WITH DEEP LEARNING

http://developer.nvidia.com/deep-learning



Home - ComputeWorks - Deep Learning

NVIDIA GPUs - The Engine of Deep Learning

Traditional machine learning uses handwritten feature extraction and modality-specific machine learning algorithms to label images or recognize voices. However, this method has several drawbacks in both time-to-solution and accuracy.

Today's advanced deep neural networks use algorithms, big data, and the computational power of the GPU to change this dynamic. Machines are now able to learn at a speed, accuracy, and scale that are driving true artificial intelligence.

