High-Performance Computing

Stan Tomov
Research Asst. Professor

The Innovative Computing Laboratory
Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

2017 Summer Research Experiences for Undergraduate (REU)
Research Experiences in Computational Science, Engineering, and Mathematics (RECSEM)
Knoxville, TN

e JNIVERSITYof
"TENNESSEE

eeeeeeeeeeeeeeeeee

About ICL

IN\ID\/ATIVE

COMPUTING LABORATORY
me UNIVERSITYof TENNESSEE

KMOXVILLE®

+ Mission - provide leading edge tools, enable technologies and software for scientific computing, develop standards for scientific
computing in general

+ This includes standards and efforts such as
PVM, MPI, LAPACK, ScaLAPACK, BLAS, ATLAS, Netlib, Top 500, PAPI, NetSolve, and the Linpack Benchmark

+ ICL continues these efforts with PLASMA, MAGMA, HPC Challenge, BlackJack, OpenMPI, and MuMI, as well as other innovative
computing projects

Dense Linear Algebra in Applications

Dense Linear Algebra (DLA) is needed in a wide variety of science and
engineering applications:

Linear systems: Solve Ax =hb

« Computational electromagnetics, material science, applications using
boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

* Least squares: Find x to minimize || Ax-b (|

« Computational statistics (e.g., linear least squares or ordinary least squares),
econometrics, control theory, signal processing, curve fitting, and many more

 Eigenproblems: Solve Ax = A x

« Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

- SVD: A=UZXZV*(Au=ovandA’ = gu)
+ Information retrieval, web search, signal processing, big data analytics, low rank
matrix approximation, total least squares minimization, pseudo-inverse, and many more
« Many variations depending on structure of A
» Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.
* DLA s crucial to the development of sparse solvers

coe
F

eceeccceocee

Dense Linear Algebra in Applications

Dense Linear Algebra (DLA) is needed in a wide variety of science and

engineering applications: Provided in MAGMA 2.3
- Linear systems: Solve Ax =b —) [FEATURESAND SUPPORT
» MAGMA 2.3 For CUDA
« Computational electromagnetics, material science, applications using » cIMAGMA 1.4 ror OpenCL
boundary integral equations, airflow past wings, fluid flow around ship » MAGMA MIC 1.4 or Intel Xeon Phi
and other offshore constructions, and many more S
. . n . U hi
* Least squares: Find x to minimize || Ax-b || O opert yeor?
[o @ Linear systemsolvers
+ Computational statistics (e.g., linear least squares or ordinary least squares), ® ® @ Eigenvalue problem solvers
econometrics, control theory, signal processing, curve fitting, and many more =
. - e o Aucxiliary BLAS
 Eigenproblems: Solve Ax = A x . i
« Computational chemistry, quantum mechanics, material science, face recognition, L | e ® SparselA
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational ® ©® © CPUGPUInterface
analysis, compression, and many more o ® ® Hulisloreds t
. - % _ * o ultiple precision suppor
‘ SVD' A - U z V (Au - GV and A V - GU) o Non-GPU-resident factorizations
+ Information retrieval, web search, signal processing, big data analytics, low rank ® @ @ Multicoreand multi-GPU support

matrix approximation, total least squares minimization, pseudo-inverse, and many more

L i @ NEW MAGMA Analytics/DNN o
« Many variations depending on structure of A S0 0 L :
 Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded, ® o o linx § =
sparse with dense blocks, etc. o o Windows ~
« DLA s crucial to the development of sparse solvers ° o Mac 03

~—— http://icl.cs.utk.edu/magma
https://bitbucket.org/icl/magma

MAGMA Today

MAGMA - provides highly optimized LA well beyond LAPACK for GPUs;
— research vehicle for LA on new architectures for a number of projects.

for architectures in

{ CPUs + Nvidia GPUs (CUDA),
CPUs + AMD GPUs (OpenCL),
CPUs + Intel Xeon Phis,
manycore (native: GPU or KNL/CPU),
embedded systems, combinations, and
software stack, e.g., since CUDA x}

for precisions in

{s, d,c, z
half-precision (FP16),
mixed, ... }

for interfaces
{ heterogeneous CPU/GPU, native, ... }

« LAPACK

BLAS

Batched LAPACK

Batched BLAS

Sparse

Tensors

MAGMA-DNN

MAGMA for CUDA
GPU Center of Excellence (GCOE) for 9t year

MAGMA for Xeon Phi

Intel Parallel Computing Center (IPCC)
6t year collaboration with Intel on Xeon Phi

MAGMA in OpenCL
Collaboration with AMD

Number of downloads for MAGMA 2.2 is 7,869
Now MAGMA is hosted on Bitbucket

MAGMA Forum: 3,039 + 209 (3,248) posts in
817 + 52 (869) topics, 1,355 + 486 (1,841) users

MAGMA is incorporated in MATLAB (as of the R2010b),
contributions in CUBLAS and MKL,

AMD, Siemens (in NX Nastran 9.1), ArrayFire,
ABINIT, Quantum-Espresso, R (in HIPLAR & CRAN),
SIMULIA (Abaqus), MSC Software (Nastran and Marc),
Cray (in LibSci for accelerators libsci_acc),
Nano-TCAD (Gordon Bell finalist),

Numerical Template Toolbox (Numscale), and others.

Why use GPUs in HPC?

PERFORMANCE & ENERGY EFFICIENCY
MAGMA 2.3 LU factorization in double precision arithmetic

Energy efficiency

(under ~ the same power draw)

Intel Xeon E5-2650 v3 (Haswell) NVIDIA Kepler GPU NVIDIA Pascal GPU NVIDIA Volta GPU
CPU 2x10 cores @ 2.30 GHz m 15 MP x 192 @ 0.88 GHz m 56 MP x 64 @ 1.19 GHz V100 80 MP x 64 @ 1.38 GHz
6000 25 -
=l=\/100
5000
» 10x 20 -
Q «®=P100 £ 10x
T 4000 =
[72]
3 “B=K40 o 157
c
g 3000 <u_l5
= =t=CPU
(@) i
2 10
S 2000
1000 - >
0 1 T T T T T T T T T T T T T T T T T O I I I I

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k
Matrix size N x N

CPU K40 P100 V100

Software portability

LAPACK and
ScaLAPACK

K Standard dense linear
algebra (DLA) libraries
» Many applications rely
on DLA
* Designed in 80/90’s for
\cache-based architectures

APPLICATIONS

ScalLAPACK
LAPACK

A AT DS

Must be redesigned for modern
heterogeneous systems with
multi/many-core CPUs, GPUs,
and coprocessors.

Memory h

16/core AVX2 | 32/core Avx-512 256 KB/SM 256 KB/SM
32 KB/core 32 KB/core 32 KB/core 64 KB/SM 96 KB/SM
256 kB/core | 1024kB/2cores | 2ms | ame | emB |

REGISTERS
L1 cAc

L2 CACHE

L3 ca |_asve_ | o.16ce

PCl EXPRESS GEN3X16 16 GB/s 16 GB/s 16 GB/s 16 GB/s 300 GB/s (NVL)
NVLINK 23 flops/byte 166 flops/byte 2 flops/byte 294 flops/byte 25 flops/byte

INTERC!
INFINIBAI

-

Memory hierarchies for different type of architectures
Flops per byte transfer (all flop rates for 64 bit operands

Overview of Dense Numerical Linear Algebra

Libraries

netlib.org icl.utk.edu/research

Kernels for
BLAS dense linear algebra

Sequential
LAPACK dense linear algebra
Parallel distributed
ScaLAPACK dense linear algebra

PLASMA

SLATE

new software
for multicore
and accelerators

dense linear algebra
(multicore)

Dense/batched/sparse linear algebra/DNN
(accelerators)

dense linear algebra
(distributed memory [muticore [accelerators)

BLAS: Basic Linear Algebra Subroutines

* Level 1 BLAS — vector operations
— O(n) data and flops (floating point operations)

— Memory bound:
O(1) flops per memory access

BLAS: Basic Linear Algebra Subroutines

* Level 1 BLAS — vector operations y=alxi+ply

— O(n) data and flops (floating point operations)

— Memory bound:
O(1) flops per memory access

* Level 2 BLAS — matrix-vector operations yl=a| A |x|+B
— O(n?) data and flops

— Memory bound:
O(1) flops per memory access —

< |

BLAS: Basic Linear Algebra Subroutines

* Level 1 BLAS — vector operations y=alxi+ply
— O(n) data and flops (floating point operations)

— Memory bound:
O(1) flops per memory access

— O(n?) data and flops

— Memory bound:
O(1) flops per memory access —

* Level 2 BLAS — matrix-vector operations yl=a| A + B

* Level 3 BLAS — matrix-matrix operations
— O(?) data, O(n3) flops

— Surface-to-volume effect
— Compute bound:

O(n) flops per memory access

< |

Why Higher Level BLAS?

- By taking advantage of the principle of locality:

* Present the user with as much memory as is available in the cheapest technology.
* Provide access at the speed offered by the fastest technology.

- Can only do arithmetic on data at the top of the hierarchy

- Higher level BLAS lets us do this

BLAS Memory| Flops Flops/
Refs
Level 1 3n 2n
y=y+ox
Level 2 n2 2n2
y=y+AX
Level 3 4n2 2n3
C=C+AB

Level 1, 2 and 3 BLAS
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

: nviDia TESLA

o
=)=
—H |
]
EI-
==
==
1=!-l'
|
=

4800 I I I I I I I I I

4400 - - .
4000 - 2 -
3600 - - i

3200 - 31x -
o 2800 - - -

~~

S 2400 |- i

252000— —
y=y+ A*x

1600 B _
1200 [=@=dgemm BLAS Level 3 ||

800 =@=dgemv BLAS L(;,:?/f y= O *x+y
1

d BLAS L
400 ¢ ~f—daxpy >~

0 0,

Matrix size (N), vector size (NxN)

Nvidia P100

The theoretical peak double precision is 4700 Gflop/s
CUDA version 8.0

Accelerating LA for Data Analytics?

« Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
In data analytics applications

 Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for Small matrices, tensors, and batched
Data that is multidimensional / relational computations
user Fixed-size
user g % @ Q II_T- batches
L8es 0%5?, =2 'l_ﬂ
(e _ .
£ ’}) 1 2% & ‘ -==1_ \ariable-size
2 &S 3 F o ,‘
& T gé} A [ﬂ/ batches
matrix 3 order tensor

\é% Dynamic batches

5:-;;’ Tensors

Data Analytics and LA on many small matrices

Data Analytics and associated with it Linear Algebra on small LA Sparse/Dense solvers & preconditioners
problems are needed in many applications: Sparse / Dense Matrix DAG-based factorization
* Machine learning, * Neuroscience, System m=) Batched LAPACK
« Data mining, « Astrophysics, (AL A, AL A e\) =)
* High-order FEM, * Quantum chemistry, A ®0 O m==) | Single calls to
« Numerical LA, « Multi-physics problems, NS ’ Batched BLAS
* Graph analysis, » Signal processing, etc. B
A41
Machine learning Applications using high-order FEM
Convolution Pooling - Convolution oy prgﬁéﬁgas « Matrix-free basis evaluation needs efficient tensor contractions,
Output @ —— — e w—wr_Chirken 0 4 —
| i = ll_l_l- %ﬁeﬁgmg Cil,iZ,iS - EAk,ilBk,iz,B
O e o I e B g 001 ¢
\:\ o« - L Convolution of Filters F, (feature detectioln) t?nd inputim.agef D: . Within ECP CEED PI"OjeCt, designed MAGMA batched methods
TANEL TS | comereveie o ontomor contracton o to split the computation in many small high-intensity GEMMs,
O..- > D.F.. grouped together (batched) for efficient execution:

Plenty of parallelism; small operations that must be batched

With data “reshape” the computation can be transformed into B h .. = AT B... for ran fi
a batched GEMM (for efficiency; among other approaches) atc —{ C'3 i3 orrange o 3 }

Machine learning / Artificial Inteligenge

 Give computers the ability to “learn”

Human brain vs. supercomputer ?
« Soon we may not have to program computers

— We will train them instead ! D o e

> »l o) 7:40/12:44

See part of GTC'18 KeynOte from NVIDIA CEO Jensen Huang https://www.scienceabc.com/humans/the-human-brain-vs-supercomputers-which-one-wins.html
https://www.youtube.com/watch?v=0a__wkSmWUw

MagmaDNN - Data Analytics Tool

» MagmaDNN 0.1-Alpha — HP Data analytics and ML

GPU-accelerated numerical software using MAGMA as
computational backend to accelerate its LA computations

» Open source; looking for feedback and contributions
Started with students from REU/RECSEM program
https://bitbucket.org/icl/magmadnn

> Implemented/proposed so far

» Tensors and tensor operations

» Deep learning primitives:
Fully-connected layers, convolutional layers,
pooling layers, activation layers, and output layers.
All of them support SGD back-propagation training

» Established adapters for calling CuDNN

» Applied MagmaDNN to the MNIST benchmark using

multilayer perceptron or a convolutional neural network.

Provided in MAGMA 2.3

JDA
cU [OpenCL Xe
(] o
o o

SV E VS http://icl.cs.utk.edu/magma https://bitbucket.org/icl/magmadnn

tel .
i

FEATURES AND SUPPORT

» MAGMA 2.3 ror CUDA

» cIMAGMA 1.4ror OpenCL

» MAGMA MIC 1.4 ror Intel Xeon Phi

Linear system solvers
Eigenvalue problem solvers
Auxiliary BLAS

Batched LA

Sparse LA

CPU/GPU Interface

Multiple precision support
Non-GPU-resident factorizations
Multicore and multi-GPU support
MAGMA Analytics/DNN

LAPACK testing

Linux

Windows

Mac 0S

Fully connected layers

» Data (input, output, NN weights, etc.) is handled

through tensor abstractions
/I 2d tensor for n_images and n_features in the corresponding dimensions

Fully-connected 3-layer Neural Network example Tensor<float> Images = Tensor<float>({n_images, n_features});

» Support for various layers:
Fully connected (FCLayer), convolution, activation, flatten,
pooling, input, output, etc. layers

44
«?‘Q

ST $\ /| Create layers for the network
é':% . FCLayer<float> *FC1 = new FCLayer<float>(&inputLayer, 128);
// \\ output layer ActivationLayer<float> *actv1 = new ActivationLayer<float>(FC1, SIGMOID);
‘ FCLayer<float> *FC2 = new FCLayer<float>(actv1, n_output_classes);
input layer
hidden layer 1 hidden layer 2 > Support networks — composed of layers

std::vector<Layer<float>*> vec_layer;
vec_layer.push_back(&inputLayer);
vec_layer.push_back(FC1);
vec_layer.push_back(actv1);
vec_layer.push_back(FC2);

Convolutional network layers

Convolution Network (ConvNet) example

4
| 4

depth

OOOOO§ i
00000
W

height

Bl B—

idth

» Layers are typically 3D volumes

» Handled through tensors
» Each layer transforms 3D tensor to 3D tensor

» Layers support the forward and backward pass
algorithms for the training

» Support for optimization solvers (GD and derivatives)
» Gradient Descent (GD)
» Stochastic Gradient Descent (SGD)
» Mini-Batch Gradient Descent (MB-GD)

How to accelerate on manycore GPU and CPUs?

» Convolutions can be accelerated in various ways:
» Unfold and GEMM

> FFT
Convolution Network (ConvNet) example » Winograd minimal Fast Convolution

. . . L m n k M
filtering — reduction e
to batched GEMMs
0
3136 512 256 16

/—>
9 3136 512 512 16

10 3136 512 512 16
l l 11 784 512 512 16
12 784 512 512 16
13 784 512 512 16

12544 64 3 1
12544 64 64 1
12544 128 64 4
12544 128 128 4
8
8

6272 256 128
6272 256 256
6272 256 256 8§

0 1 N B W

Require matrix-matrix products of various sizes,
including batched GEMMSs

» Use autotuning to handle complexity of tuning

How to implement fast batched DLA?

Problem sizes influence algorithms & optimization techniques

Kernels are designed various scenarios and

Nvidia V100 GPU . .
8000 " parameterized for autotuning framework to
- small sizes medium sizes Large sizes find “best” performing kernels
7
c000 Optimizing GEMM’s: Kernel design
0 < N >
@ 5000 A
5} 19X 1BLK |
%= 4000 e R
© K BLK
Switch to non-batch i
3000 Vo
2000 o B
-®-Batch dgemm BLAS 3 K
1000 < —
N/ -%-Standard dgemm BLAS 3 A BLK """"""""""""" cncn c. | cu + Reading/writing th(.e elements is
° I A based on the TB size (# threads)
0 500 1000 1500 2000 2500 3000 3500 4000 y [BLK— .. lelc,lc, and 50 is an exira parameter.
~ i i Nt
2071000 matrices of size Cu|Ca |G| Cu| + Alsoit could be different for A, B
o . . and C
Matrix sizes (fixed) in the batch ! A Ca | Caz | Caa | Cas

Batch size 1,000 Batch size 300 Batch size 50

Examples

» MagmaDNN has testing/example drivers

» Example implementing the MNIST benchmark
using MagmaDNN multilayer perceptron or a
convolutional neural network

Fully-connected 3-layer Neural Network example

input layer
l hidden layer 1 hidden layer 2 l

» The MNIST benchmark is a NN for
recognizing handwritten numbers

> Input for the training are images of
handwritten numbers and the labels
indicating what are the numbers

Examples ...

e JN[VERSITYof
TENNESSEE

KNOXVILLE

| Introduction

Brain-Computer Interface (BCl) systems have become a source of
great interest in the recent years. Establishing a link with the brain
will lead to many possibilities in the healthcare, robotics, or
entertainment fields.

Instead of using invasive BCI, we are trying to understand user
intention by classifying their Electroencephalography (EEG) result,
which recorded electrical activities of the users’ brain, with state-of-
art machine learning technologies. Through this technique, more
advanced prosthetic devices can be developed and handicapped
patients can be benefited from it.

-

Figure 1: A picture captured during experiments [1]

Objectives

* To classify the user indenting cursor movement by using EEG
signal with high accuracy, and
* To accelerate the process to acceptable speed

Machine Learning. Part B

Lucien Ng (The Chinese University of Hong Kong)

Mentors: Xiaopeng Zhao (UTK), Stanimire Tomov (UTK), Kwai Wong (UTK)

Overview of the Models

EEG-Based Control of a Computer Cursor Movement with

Students: Justin Kilmarx (University of Tennessee) , David Saffo (Loyola University),

Cun

i

] INTRODUCTION

Lol There are three known basic modes, Mo, M1, M», each of
which is a 2688 by 2688 image. The problem is, for each
input image I, we try to find a representation of I using the
three basic modes. It is known that the input image can be
closely represented as a linear combination of the three
basic modes, namely,

I =aMy+ M, + vM,

The problem can easily be solved by least square
method. However, the result of least square is quite far
away from what we desire. For example, for one of the input
images , where the true coefficients are (e, 8,7) = (1,1,1) ,
the output of least square method is (0.9950,0.8284,0.7945) .
For (e,B.7)=(1,—1,-1), the result of least square is
(0.9426, —0.3582, —0.3590) , which has large notable error.

Hid
Figy

A machine learning method with interpolation is proposed
to achieve better accuracy for current data. For example, for
an image with (o, 3,v) = (1,-1,-1) , the output of the neural
network is (0.9994, —0.9675, —0.9828), with 2 hidden layers, 15
nodes in each hidden layer and regularisation parameter =

0.01.

Unmixing 4-D Ptychographic Image:
Part B:Data Approach

Student: Zhen Zhang(CUHK), Huanlin Zhou(CUHK), Michaela D. Shoffner(UTK),
Mentors: R. Archibald(ORNL), S. Tomov(UTK), A. Haidar(UTK), K. Wong(UTK)

generate synthetic data with interpolation. For each of the
pixels in an input image, we know the bias of linear
approximation. It is assumed that the bias is a result of
mutual effect of 3 and 7y . Namely, the bias for a pixel (z,) .

can be written as following: a 0.9891 1.005:

B = Bz 4(8,7) B 1.0010 0.973¢

We can interpolate the bias using the four points for each Y 0.9946 -0.993
pixel. If we take M; and M also as input images, we can
interpolate using six points.

(4-point case, one inpL
T True coef (1,1,1) (1,1,-

coef

(6-point case, one inpL

COMPUTATIONS&RESULTS ST coet (1,1,1) (1,1,

coef T

To simplify the inputs we sum up all pixel in a 192 by 192 09934 1.001
block in an input image_ or basic mode; we will only consider B 0.8718 1.075
the 14 by 14 summed image. v 1.0464 -1.09€

= " Recall: M1 and |
Note that in the 4-point ¢

ELE

| ANALYSIS

A better testing of the

check if the output is (1
N0 0OR2Q N ONBAY which

i - J

Current work and Future directions

Performance portability and unified support on GPUs/CPUs

— C++ templates w/ polymorphic approach;
— Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs.

Autotuning

— Critical for performance to provide tuning that is application-specific;

— Alot of work has been done (on certain BLAS kernels and the approach) but
still need a simple framework to handle the entire library.

Extend functionality, kernel designs, and algorithmic variants
— BLAS, Batched BLAS, architecture and energy-aware
— New algorithms and building blocks, architecture and energy-aware
— Randomization algorithms, e.g., for low-rank approximations, and applications

Use and integration with applications of interest (with ORNL collaborators)
— Brain-computer interface systems
— Post-processing data from electron detectors for high-resolution microscopy studies (Unmixing 4-D Ptychographic Images)
— Optimal cancer treatment strategies

Collaborators and Support

DOD
MAGMA team |
http://icl.cs.utk.edu/magma MODERNIZATION PROGRAM
PLASMA team
http://icl.cs.utk.edu/plasma @2 NVIDIA.

Collaborating partners @\ The MathWorks (intel

AMD
University of Tennessee, Knoxville

Lawrence Livermore National Laboratory
University of California, Berkeley
University of Colorado, Denver

INRIA, France (StarPU team) @
KAUST, Saudi Arabia

AR, U.S. DEPARTMENT OF —

NERGY E(C'P ==
S

