
High-Performance Computing

Stan	Tomov
Research	Asst.	Professor

The Innovative Computing Laboratory
Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

2017 Summer Research Experiences for Undergraduate (REU)
Research Experiences in Computational Science, Engineering, and Mathematics (RECSEM)
Knoxville, TN

Staff of more than 40 researchers, students, and administrators

About ICL

u Mission – provide leading edge tools, enable technologies and software for scientific computing, develop standards for scientific
computing in general

u This includes standards and efforts such as
PVM, MPI, LAPACK, ScaLAPACK, BLAS, ATLAS, Netlib, Top 500, PAPI, NetSolve, and the Linpack Benchmark

u ICL continues these efforts with PLASMA, MAGMA, HPC Challenge, BlackJack, OpenMPI, and MuMI, as well as other innovative
computing projects

Founded by Prof. Jack Dongarra, ICL celebrated its 25th anniversary in 2015

Knoxville, TN

Dense Linear Algebra (DLA) is needed in a wide variety of science and
engineering applications:

• Linear systems: Solve Ax = b
• Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

• Least squares: Find x to minimize || Ax – b ||
• Computational statistics (e.g., linear least squares or ordinary least squares),

econometrics, control theory, signal processing, curve fitting, and many more
• Eigenproblems: Solve Ax = λ x

• Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

• SVD: A = U Σ V* (Au = σv and A*v = σu)
• Information retrieval, web search, signal processing, big data analytics, low rank

matrix approximation, total least squares minimization, pseudo-inverse, and many more
• Many variations depending on structure of A

• A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

• DLA is crucial to the development of sparse solvers

Dense Linear Algebra in Applications

Dense Linear Algebra (DLA) is needed in a wide variety of science and
engineering applications:

• Linear systems: Solve Ax = b
• Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

• Least squares: Find x to minimize || Ax – b ||
• Computational statistics (e.g., linear least squares or ordinary least squares),

econometrics, control theory, signal processing, curve fitting, and many more
• Eigenproblems: Solve Ax = λ x

• Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

• SVD: A = U Σ V* (Au = σv and A*v = σu)
• Information retrieval, web search, signal processing, big data analytics, low rank

matrix approximation, total least squares minimization, pseudo-inverse, and many more
• Many variations depending on structure of A

• A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

• DLA is crucial to the development of sparse solvers

Dense Linear Algebra in Applications

Provided in MAGMA 2.3

http://icl.cs.utk.edu/magma
https://bitbucket.org/icl/magma

MAGMA Today

• MAGMA for CUDA
GPU Center of Excellence (GCOE) for 9th year

• MAGMA for Xeon Phi
Intel Parallel Computing Center (IPCC)
6th year collaboration with Intel on Xeon Phi

• MAGMA in OpenCL
Collaboration with AMD

• Number of downloads for MAGMA 2.2 is 7,869
Now MAGMA is hosted on Bitbucket

• MAGMA Forum: 3,039 + 209 (3,248) posts in
817 + 52 (869) topics, 1,355 + 486 (1,841) users

• MAGMA is incorporated in MATLAB (as of the R2010b),
contributions in CUBLAS and MKL,
AMD, Siemens (in NX Nastran 9.1), ArrayFire,
ABINIT, Quantum-Espresso, R (in HiPLAR & CRAN),
SIMULIA (Abaqus), MSC Software (Nastran and Marc),
Cray (in LibSci for accelerators libsci_acc),
Nano-TCAD (Gordon Bell finalist),
Numerical Template Toolbox (Numscale), and others.

MAGMA – provides highly optimized LA well beyond LAPACK for GPUs;
– research vehicle for LA on new architectures for a number of projects.

for architectures in
{ CPUs + Nvidia GPUs (CUDA),

CPUs + AMD GPUs (OpenCL),
CPUs + Intel Xeon Phis,
manycore (native: GPU or KNL/CPU),
embedded systems, combinations, and
software stack, e.g., since CUDA x}

for precisions in
{ s, d, c, z,

half-precision (FP16),
mixed, … }

for interfaces
{ heterogeneous CPU/GPU, native, … }

• LAPACK
• BLAS
• Batched LAPACK
• Batched BLAS
• Sparse
• Tensors
• MAGMA-DNN
• …

0

1000

2000

3000

4000

5000

6000

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k

V100

P100

K40

CPU

Why use GPUs in HPC?

PERFORMANCE & ENERGY EFFICIENCY

GF
LO

Ps
 / W

at
t

Matrix size N x N

Pe
rfo

rm
an

ce
 G

FL
OP

/s

MAGMA 2.3 LU factorization in double precision arithmetic
K40CPU Intel Xeon E5-2650 v3 (Haswell)

2x10 cores @ 2.30 GHz
NVIDIA Kepler GPU
15 MP x 192 @ 0.88 GHz P100 NVIDIA Pascal GPU

56 MP x 64 @ 1.19 GHz

0

5

10

15

20

25

CPU K40 P100 V100

V100 NVIDIA Volta GPU
80 MP x 64 @ 1.38 GHz

10x
10x

Energy efficiency
(under ~ the same power draw)

• Standard dense linear
algebra (DLA) libraries

• Many applications rely
on DLA

• Designed in 80/90’s for
cache-based architectures

LAPACK and
ScaLAPACK

Software portability

REGISTERS	

MAIN	MEMORY	BW	

PCI	EXPRESS	GEN3X16	
NVLINK		

INTERCONNECT	
INFINIBAND	EDR	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Intel	Haswell	
E5-2650	v3		

Intel	KNL	7250	
DDR5|MCDRAM	

ARM	
Cortex	A57	

Nvidia	
P100	

Nvidia	
V100	

10	cores	
368	Gflop/s	
105	WaUs	

68	cores	
2662	Gflop/s	
215	WaUs	

4	cores	
32	Gflop/s	
7	WaUs	

56	SM	64	cores	
4700	Gflop/s	
250	WaUs	

80	SM	64	cores	
7500	Gflop/s	
300	WaUs	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 96	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 4	MB	 6	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 16	GB	 16	GB	

68	GB/s		
5.4	flops/byte	

				115	|	421	GB/s	
23	|	6	Flops/byte	

26	GB/s	
1.2	flops/byte	

720	GB/s	
6.5	flops/byte	

900	GB/s	
8.3	flops/byte	

16	GB/s	
23	flops/byte	

16	GB/s	
166	flops/byte	

16	GB/s	
2	flops/byte	

16	GB/s	
294	flops/byte	

300	GB/s	(NVL)	
25	flops/byte	

12	GB/s	
30	flops/byte	

12	GB/s	
221	flops/byte	

12	GB/s	
2.6	flops/byte	

12	GB/s	
392	flops/byte	

12	GB/s	
625	flops/byte	

Memory	hierarchies	for	different	type	of	architectures	
Flops	per	byte	transfer	(all	flop	rates	for	64	bit	operands)	

Memory	hierarchies		Must be redesigned for modern
heterogeneous systems with
multi/many-core CPUs, GPUs,
and coprocessors.

Overview of Dense Numerical Linear Algebra
Libraries

LAPACK

ScaLAPACK

BLAS

netlib.org

PLASMA

MAGMA

SLATE

icl.utk.edu/research

dense linear algebra
(multicore)

Dense/batched/sparse linear algebra/DNN
(accelerators)

dense linear algebra
(distributed memory / muticore / accelerators)

new software
for multicore

and accelerators

Kernels for
dense linear algebra

Sequential
dense linear algebra

Parallel distributed
dense linear algebra

8

• Level 1 BLAS — vector operations
– O(n) data and flops (floating point operations)
– Memory bound:
O(1) flops per memory access

• Level 2 BLAS — matrix-vector operations
– O(n2) data and flops
– Memory bound:
O(1) flops per memory access

• Level 3 BLAS — matrix-matrix operations
– O(n2) data, O(n3) flops
– Surface-to-volume effect
– Compute bound:
O(n) flops per memory access

BLAS: Basic Linear Algebra Subroutines

9

• Level 1 BLAS — vector operations
– O(n) data and flops (floating point operations)
– Memory bound:
O(1) flops per memory access

• Level 2 BLAS — matrix-vector operations
– O(n2) data and flops
– Memory bound:
O(1) flops per memory access

• Level 3 BLAS — matrix-matrix operations
– O(n2) data, O(n3) flops
– Surface-to-volume effect
– Compute bound:
O(n) flops per memory access

BLAS: Basic Linear Algebra Subroutines

10

• Level 1 BLAS — vector operations
– O(n) data and flops (floating point operations)
– Memory bound:
O(1) flops per memory access

• Level 2 BLAS — matrix-vector operations
– O(n2) data and flops
– Memory bound:
O(1) flops per memory access

• Level 3 BLAS — matrix-matrix operations
– O(n2) data, O(n3) flops
– Surface-to-volume effect
– Compute bound:
O(n) flops per memory access

BLAS: Basic Linear Algebra Subroutines

11

Why Higher Level BLAS?

• By taking advantage of the principle of locality:

• Present the user with as much memory as is available in the cheapest technology.

• Provide access at the speed offered by the fastest technology.

• Can only do arithmetic on data at the top of the hierarchy

• Higher level BLAS lets us do this

Registers

L 1 Cache

L 2 Cache

Local Memory

Remote Memory

Secondary Memory

Nvidia P100
The theoretical peak double precision is 4700 Gflop/s
CUDA version 8.0

Level 1, 2 and 3 BLAS
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

Matrix size (N), vector size (NxN)
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Gf
lop

/s

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

dgemm BLAS Level 3
dgemv BLAS Level 2
daxpy BLAS Level 1

145 Gflop/s

52 Gflop/s

4503 Gflop/s

31x

C = C + A*B

y = y + A*x

y = �*x + y

13

Accelerating LA for Data Analytics?

• Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
in data analytics applications

• Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for
Data that is multidimensional / relational

Small matrices, tensors, and batched
computations

Fixed-size
batches

Variable-size
batches

Dynamic batches

Tensors

Data Analytics and LA on many small matrices

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:
• Machine learning,
• Data mining,
• High-order FEM,
• Numerical LA,
• Graph analysis,

• Neuroscience,
• Astrophysics,
• Quantum chemistry,
• Multi-physics problems,
• Signal processing, etc.

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .
Convolution Pooling Convolution Pooling Fully Output

 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4
boat 0.3

person 0.1
dog 0.01

Batched LAPACK
Sparse / Dense Matrix

System

Single calls to
Batched BLAS

DAG-based factorization

• Matrix-free basis evaluation needs efficient tensor contractions,

• Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ Ci3 = AT Bi3, for range of i3 }

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

Machine learning Applications using high-order FEM

Sparse/Dense solvers & preconditioners

Machine learning / Artificial Inteligenge

• Give computers the ability to “learn”

• Soon we may not have to program computers
– We will train them instead !

–

See part of GTC’18 Keynote from NVIDIA CEO Jensen Huang
https://www.youtube.com/watch?v=oa__wkSmWUw

Human brain vs. supercomputer ?

https://www.scienceabc.com/humans/the-human-brain-vs-supercomputers-which-one-wins.html

“estimated”
1 exaFLOP

MagmaDNN – Data Analytics Tool

Ø MagmaDNN 0.1-Alpha – HP Data analytics and ML
GPU-accelerated numerical software using MAGMA as
computational backend to accelerate its LA computations

Ø Open source; looking for feedback and contributions
Started with students from REU/RECSEM program
https://bitbucket.org/icl/magmadnn

Ø Implemented/proposed so far
Ø Tensors and tensor operations
Ø Deep learning primitives:

Fully-connected layers, convolutional layers,
pooling layers, activation layers, and output layers.
All of them support SGD back-propagation training

Ø Established adapters for calling CuDNN
Ø Applied MagmaDNN to the MNIST benchmark using

multilayer perceptron or a convolutional neural network.

Provided in MAGMA 2.3

http://icl.cs.utk.edu/magma https://bitbucket.org/icl/magmadnn

Fully connected layers

Fully-connected 3-layer Neural Network example

Ø Data (input, output, NN weights, etc.) is handled
through tensor abstractions
// 2d tensor for n_images and n_features in the corresponding dimensions
Tensor<float> Images = Tensor<float>({n_images, n_features});

Ø Support for various layers:
Fully connected (FCLayer), convolution, activation, flatten,
pooling, input, output, etc. layers
// Create layers for the network
FCLayer<float> *FC1 = new FCLayer<float>(&inputLayer, 128);
ActivationLayer<float> *actv1 = new ActivationLayer<float>(FC1, SIGMOID);
FCLayer<float> *FC2 = new FCLayer<float>(actv1, n_output_classes);

Ø Support networks – composed of layers
std::vector<Layer<float>*> vec_layer;
vec_layer.push_back(&inputLayer);
vec_layer.push_back(FC1);
vec_layer.push_back(actv1);
vec_layer.push_back(FC2);
…

Convolutional network layers

Convolution Network (ConvNet) example

Ø Layers are typically 3D volumes

Ø Handled through tensors

Ø Each layer transforms 3D tensor to 3D tensor

Ø Layers support the forward and backward pass
algorithms for the training

Ø Support for optimization solvers (GD and derivatives)
Ø Gradient Descent (GD)
Ø Stochastic Gradient Descent (SGD)
Ø Mini-Batch Gradient Descent (MB-GD)

How to accelerate on manycore GPU and CPUs?

Convolution Network (ConvNet) example

Ø Convolutions can be accelerated in various ways:
Ø Unfold and GEMM
Ø FFT
Ø Winograd minimal

filtering – reduction
to batched GEMMs

Ø Use autotuning to handle complexity of tuning
Require matrix-matrix products of various sizes,
including batched GEMMs

29

MCDRAM contribution in Performance

How to implement fast batched DLA?

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000

50~1000 matrices of size

Nvidia V100 GPU

Batch dgemm BLAS 3

Standard dgemm BLAS 3

small sizes
!
!
!
!
!
!
!
!
!
!
!
!
!
!

medium sizes
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Large sizes

!
!
!
!
!
!

Switch to non-batch
!
!
!
!
!
!

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000

50~1000 matrices of size

Nvidia V100 GPU

Batch dgemm BLAS 3

Standard dgemm BLAS 3

19X

1.4X

G
flo

p/
s

Problem sizes influence algorithms & optimization techniques

Matrix sizes (fixed) in the batch
Batch size 1,000 Batch size 300 Batch size 50

C11# C12# C13# C14#

C21# C22# C23# C24#

C31# C32# C33# C34#

C41# C42# C43# C44#

M

K

K

N

BLK
K

BLK
M

BLK
K

BLK
N

B

A

thy

thx

!!!!!

•  Reading/writing the elements is
based on the TB size (# threads)
and so is an extra parameter.

•  Also it could be different for A, B
and C

Optimizing GEMM’s: Kernel design

Kernels are designed various scenarios and
parameterized for autotuning framework to

find “best” performing kernels

Examples

Fully-connected 3-layer Neural Network example

Ø MagmaDNN has testing/example drivers

Ø Example implementing the MNIST benchmark
using MagmaDNN multilayer perceptron or a
convolutional neural network

Ø The MNIST benchmark is a NN for
recognizing handwritten numbers

Ø Input for the training are images of
handwritten numbers and the labels
indicating what are the numbers

Examples …

Current work and Future directions

• Performance portability and unified support on GPUs/CPUs
– C++ templates w/ polymorphic approach;
– Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs.

• Autotuning
– Critical for performance to provide tuning that is application-specific;
– A lot of work has been done (on certain BLAS kernels and the approach) but

still need a simple framework to handle the entire library.

• Extend functionality, kernel designs, and algorithmic variants
– BLAS, Batched BLAS, architecture and energy-aware
– New algorithms and building blocks, architecture and energy-aware
– Randomization algorithms, e.g., for low-rank approximations, and applications

• Use and integration with applications of interest (with ORNL collaborators)
– Brain-computer interface systems
– Post-processing data from electron detectors for high-resolution microscopy studies (Unmixing 4-D Ptychographic Images)
– Optimal cancer treatment strategies

Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
Lawrence Livermore National Laboratory
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

