Abstract

Discontinuous Galerkin Method (DG-FEM) is a class of Finite Element Method (FEM) for finding approximation solutions to systems of differential equations that can be used to simulate scientific transport phenomena.

The goal of my project is to implement DG-FEM in 3D to solve a set of partial differential equations in parallel on HPC platform

Discontinuous Galerkin Method

For a Poisson's equation:

$$
\left\{\begin{array}{ccc}
-\Delta u=f & \text { in } & \Omega \\
u=y_{d} & \text { on } \\
\frac{\partial u}{} \\
\frac{\partial u}{\partial \vec{n}} g_{d} & \text { on } & \Gamma_{D}
\end{array}\right.
$$

a test functions v can be choose to transform the equation into the weak form of the differential equation:

$$
-\int_{\Omega} \Delta u v d x=\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\partial \Omega}(\nabla u \cdot \mathbf{n}) v d s=\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\partial \Omega} \frac{\partial u}{\partial \mathbf{n}} v d s=\int_{\Omega} f v d x
$$

DG-FEM chooses test functions that are discontinuous across adjacent elements, resulting jump conditions on the shared boundaries.

Multi-dimensional Jump Cases

1D:

2D:

3D:

Linear System Construction

Weak formulation using test function v :

$$
\begin{aligned}
-\int_{\Omega} \Delta u v d x= & -\sum_{K \in \mathcal{F}_{h}} \int_{K} \Delta u v d x \\
= & \sum_{K \in \mathcal{F}_{K}} \int_{K} \nabla u \cdot \nabla v d x-\sum_{K \in \mathcal{F}_{h}} \int_{\partial K} \frac{\partial u}{\partial \mathbf{n}} v d s \\
= & \sum_{K \in \mathcal{F}_{h}} \int_{K} \nabla u \cdot \nabla v d x-\sum_{e_{h} \in \varepsilon_{h}^{p}} \int_{e_{h}} \frac{\partial u}{\partial} v d s-\sum_{e_{h} \in \varepsilon_{h}^{V_{h}}} \int_{e_{h}} \frac{\partial u}{} v d d s \\
& \quad-\sum_{e_{h} \in \varepsilon_{h}} \int_{e_{h}}\left(\frac{\partial u^{+}}{\partial n^{+} n^{+}} \nu^{+}+\frac{\partial u^{-}}{\partial \mathbf{n} n^{-}} v^{-}\right) d s \\
= & \int_{\Omega} f v d x
\end{aligned}
$$

Bilinear Function for Stiffness Matrix:

Solving Linear System:

$$
\sum_{j=1}^{j=M} \underbrace{a\left(\phi_{j}, \phi_{i}\right)}_{S_{i j}} \alpha_{j}=\underbrace{\int f \phi_{i}}+\text { symmetric term + penalty term }
$$

Parallel Computing

Jump term:

Penalty term:

Loal maties	[20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	20.00	20.00	0.00	${ }^{0.00}$	0.00	0.00	${ }^{0.00}$
[omor	0.00	0.00	0.00	${ }_{200}$	${ }_{-2000}$	0.00	-000	-0.00
$\left[\begin{array}{llll}0000 & -2000 & 2000 & 000\end{array}\right]$	0.00	0.00	0.00	-20.00	20.00	0.00	0.00	0.00
[000 0.000 0.000 .000	.oo	0.00	0.00	0.00	0.00	20.00	-20.00	0.00
			0.00	${ }^{0.00}$	${ }^{0.00}$	-	500	
0.00 20.000		0.00	0.00	0.00	0.00	0.00	0.00	20.00

Why DG-FEM matters

Discontinuity between element boundaries provides local support and leads to :
\checkmark Local refinement \checkmark Complex geometries
\checkmark Parallelization \checkmark Higher-order accuracy

Future

- Extend the partial differential equation to some timedependent equations
- Expand the equation to parallel code, which can be scaled on existing supercomputers.

Acknowledgements

This project was sponsored by Oak Ridge National Laboratory, Joint Institute for Computational Sciences, University of Tennessee, Knoxville and the Chinese University of Hong Kong.

