
THE CHINESE UNIVERSITY OF HONG KONG

PROGRESS SUMMARY

Zhe Zhu, Yin Ki Ng

August 5, 2016

1 ABSTRACT

This project is based on the result of predecessor’s project of 1D-DG method and is going to explore
how we may construct the parallel code for DG-FEM to solve PDE. The 1D,2D and 3D case of the
Poisson ’s equation will be discussed respectively. After that, we will see whether we can extend the
same method to some time-dependent equation.

Some background information of FEM and DG will be given in Section 2. The idea of FEM and an
example of it will be given in Section 2.1 and 2.2. The implement of FEM in 1D Poisson’s equation will
be showed in Section 2.3 and 2.4. The general dimensional implement of FEM will be given in Section
2.5

The Section 3 introduce the detail of how to construct the stiffness matrix. Section 3.1 introduce the
main idea of the construction briefly. Section 3.2 and 3.3 introduce the idea of mapping. Section 3.4,
3.5, 3.6 introduce the calculation of each term.

The Section 4, 5, 6 gives examples of solving Poisson’s equation in 1D, 2D and 3D.
The future work is discussed finally in Section 6

1

2 INTRODUCTION OF DG-FEM

Overview: In this section, the basic idea of Finite Element Method and Discountinous Galerkin
Method will be introduced.

2.1 BASIC INFORMATION

Consider solving an PDE of the form

Lu(x) = f (x), ∀x ∈Ω⊂ Rm (2.1)

where L is a linear differential operator of second order, and f is a given function. A typical example of
the operator L that arises from many physical and engineering applications is given by

Lu(x) =−4· (q(x)4u)+ c(x)u, ∀x ∈Ω⊂ Rm (2.2)

Both mathematically and physically the solution u should satisfy some boundary conditions in order
for the differential equation (2.1) to be well defined. There are three typical boundary conditions:

1. Dirichlet boundary condition:

u = 0 on Ω (2.3)

2. Neumann boundary condition:

∂u

∂n
= 0 on Ω (2.4)

3. Robin boundary condition:

∂u

∂n
+α(x)u = 0 on Ω (2.5)

where α(x), q(x) and c(x) are given function inΩ.

For our subsequent formulation, we introduce the following spaces

L2(Ω) = {w ;
∫
Ω

w2(x)d x < inf}

H 1(Ω) = {w ∈ L2(Ω);
∫
Ω

w2(x)+
m∑

i=1
w2

xi
(x))d x < inf}

H 1
0 (Ω) = {w ∈ H 1(Ω); w = 0 on ∂u}

(2.6)

And for all u,v ∈ L2(Ω), we define the scalar product

(u, v)Ω =
∫
Ω

u(x)v(x)d x (2.7)

Associated with the operator L, we introduce a bilinear form

a(u, v) = (Lu, v), ∀u, v ∈ H 1(Ω). (2.8)

Using the integration by parts formula:∫
Ω

uxi vd x =−
∫
Ω

uvxi d x +
∫
∂Ω

uvni d x (2.9)

2

where n = (n1,n2, ...,nm)T is the outward normal unitary direction to ∂Ω. We can usually assume that
a(u, v) is symmetric and positive definite.

We now try to find an approximate solution of u(x) to the differential equation (2.1), with some
boundry conditions, such as Dirichlet boundary condition (2.3). To do so, we choose a set of basis
functions

Vh = span
{
φ1,φ2, ...,φn

}⊂ H 1
0 (Ω) (2.10)

and then try to find an approximate solution un of u in the form

un(x) =
n∑

j=1
α jφ j (x) (2.11)

where the coefficients α1,α2, ...,αn are to be determined. This is what FEM try to solve.

3

2.2 FINITE ELEMENT METHOD (FEM)

Consider the following 1D-problem, involving a differential equation with boundary conditions:

{ −u′′ = f
u(a) = u(b) = 0

(2.12)

We wish to solve the unknown trial function u on the domain I = [a,b]. As mentioned before, we
may do so by multiplying an arbitrary test function v defined such that it has the same boundary
condition v(a) = v(b) = 0 as u. We integrate over the domain to get

−
∫

(u′′+ f)v =−
∫

u′′v −
∫

f v = 0 (2.13)

Suppose we choose the test function v to be continuous and differentiable everywhere on the
domain. Integration by part on the first term gives

∫
u′v ′−u′v |ba −

∫
f v = 0

The central term disappears so we have

∫
u′v ′−

∫
f v = 0 (2.14)

Notice that instead of having a twice derivative term in equation (2.13) (strong form), now we
get a first derivative term in equation (2.14) (weak form). Cut the domain I into intervals I0 =
[x0, x1], I1 = [x1, x2], · · · IN = [xN , xN+1], we then try to approximate u by choosing our basis func-
tion (or shape function) φ= [φ1 ...φN] that would satisfy partition of unity, and approximate u as a
linear combination of φ:

uh =
i=N∑
i=1

αiφi ∈Vh (2.15)

Figure 2.1: Example of basis functions: Hat functions

where Vh = span(θ). Moreover, we may also make the choice vh ∈Vh , that is, make uh and vh both
as a linear combination of φ. We choose vh = θv̄ , where v̄ = [v̄1...v̄N]T are completely arbitrary values
at the discrete points. Substituting and rewriting equation (3) we get∫

u′
h v ′

h −
∫

f vh = v̄T
(∫

(φT)′(φ)′α−
∫
φT f

)
= 0

which must hold for all arbitrary values of v̄ , so∫
(φT)′(φ)′︸ ︷︷ ︸

S

α−
∫
φT f︸ ︷︷ ︸
r

= 0 (2.16)

where the stiffness matrix S is positive definite. Since we approximate the solution by partitioning
the domain into finite elements (intervals), this is called the Finite Element Method (FEM) and we
are left with solving the standard problem Sα= r .

4

2.3 1D DISCONTINUOUS GALERKIN METHOD

Suppose now we want our choice of the test function v being discontinuous on the nodes x1, · · · , xN .
Then we cannot integrate the first term −∫

u′′v in equation (2) since v is not differentiable on the
whole domain.

On each node x j , let x−
j represent the end of the left interval I j−1, and x+

j represent the start of the
right interval I j . Notice that we would have our function v look like this:

Figure 2.1.b: v being discontinuous on nodes

thus we are having two function v values, v(x−
j) from I j−1 and v(x+

j) from I j , on each node x j for
j = 1...N . We may proceed by choosing a new basis function φ= [φ1 ...φM] that is discontinuous at
the nodes

Figure 2.1.c: Example of linear basis functions, discontinuous at nodes

and make our choice of the test function v to be φ. So now we can do integration by part on each
interval [x j , x j+1] and get:

−
∫

u′′v =−
j=N∑
j=0

∫ x j+1

x j

u′′v

=
j=N∑
j=0

(∫ x j+1

x j

u′v ′+u′(x+
j) v(x+

j)−u′(x−
j+1) v(x−

j+1)
)

=
j=N∑
j=0

∫ x j+1

x j

u′v ′+u′(x+
0) v(x+

0)+
((
−u′(x−

1) v(x−
1)+u′(x+

1) v(x+
1)

)
+ ...

+
(
−u′(x−

N) v(x−
N)+u′(x+

N) v(x+
N)

))
−u′(x−

N+1) v(x−
N+1)

=
j=N∑
j=0

∫ x j+1

x j

u′v ′+u′(x+
0) v(x+

0)+
j=N∑
j=1

[u′v]x j
[u′v]x j[u′v]x j −u′(x−

N+1) v(x−
N+1) (2.17)

of which [u′v]x j
[u′v]x j[u′v]x j =−u′(x−

j) v(x−
j)+u′(x+

j) v(x+
j) are called the jumps. Now we may define u′(x−

0) v(x−
0) =

u′(x+
N+1) v(x+

N+1) = 0 and after adding them to the equation, we have

−
∫

u′′v =
j=N∑
j=0

∫ x j+1

x j

u′v ′+
j=N+1∑

j=0
[u′v]x j (2.18)

5

In order to transmit information between each jump, we define {·} j{·} j{·} j , [·] j[·] j[·] j be the average and difference
of the function values on x j respectively, and rewrite each jump as

[u′v]x j =−u′(x−
j) v(x−

j)+u′(x+
j) v(x+

j)

= {
1

2

(
u′(x+

j)+u′(x−
j)

)
} [v(x+

j)− v(x−
j)]+ [u′(x+

j)−u′(x−
j)] {

1

2

(
v(x+

j)+ v(x−
j)

)
}

= {u′} j [v] j + [u′] j {v} j (2.19)

The second term [u′] j {v} j disappears since u is continuous. On the other hand, we wish to make
the equation symmetric on u, v , so we add symmetric terms {v ′} j [u] j for each j . Together with the
penalty term, we obtain the weak form with a(u, v) which is a bilinear function symmetric on u, v :

a(u, v) ≡
j=N∑
j=0

∫ x j+1

x j

u′v ′+
j=N+1∑

j=0

(
{u′} j [v] j + {v ′} j [u] j︸ ︷︷ ︸

symmetric term

)
+γ

N+1∑
j=0

1

|I j |
[u] j [v] j︸ ︷︷ ︸

penalty term

(2.20)

(Notice that when the test function v is continuous, the weak form is essentially the same as the one
in FEM 1).

Assume u is to be approximated by a linear combination of φ

uh =
j=M∑
j=1

α jφ j (2.21)

so we have

a(uh , vh) =
∫

f vh + symmetric term + penalty term

a
(j=M∑

j=1
α jφ j ,φi

)
=

∫
f φi + symmetric term + penalty term for i = 1...M

j=M∑
j=1

a(φ j ,φi)︸ ︷︷ ︸
Si j

α j =
∫

f φi︸ ︷︷ ︸
ri

+ symmetric term + penalty term for i = 1...M (2.22)

Again we are left with the standard problem Sα= r . This is called the Discontinuous Galerkin Finite
Element Method (DG-FEM).

1since the second term and the penalty term would disappear.

6

2.4 ESSENCE OF THE PENALTY TERM

Suppose we have

∑
I j

∫ x j+1

x j

u′v ′+∑
I j

(
{u′} j [v] j + {v ′} j [u] j

)
=

∫
f v

and we wish to solve for u. Writing in matrix form, it is easy to see that the stiffness matrix in LHS may
be singular 2. Therefore we wish to add a penalty term to LHS such that the matrix is always invertible
and the solution can be uniquely determined. Therefore we define

a(u, v) ≡∑
I j

∫ x j+1

x j

u′v ′+∑
I j

(
{u′} j [v] j + {v ′} j [u] j

)
+γ∑

I j

1

|I j |
[u] j [v] j︸ ︷︷ ︸

penalty term

(2.23)

and we claim that the stiffness matrix S defined by a(u, v) is positive definite. We are going to show
that, for a chosen A, if γ is large enough we would always have

a(u, v) ≥ A ||u||1,h
2 ∀u ∈Vh (2.24)

where Vh is the finite element(DG) space and ||u||1,h is a well-defined norm. Then we know that S is
positive definite and thus invertible, and we are done.

With the conventional norm || · ||I = (·, ·)I
1
2 in which the inner product is defined as (f , g)I =

∫
I f g

for any functions f , g , we can now define ||u||1,h :

Definition 2.2.1:

||u||1,h =
(∑

I j

||u′||I j

2 +∑
I j

| {u′ } j |2 |I j |+
∑
I j

γ

|I j |
| [u] | j

2
) 1

2

and ||u||1,h is a well-defined norm. In particular, it satisfies the norm property

||u||1,h ≥ 0 and ||u||1,h = 0 ⇐⇒ u = 0

Proof: " ⇐ " is trivial.
" ⇒ " : We must have both ||u′||I j

2 and | {u′} j |2 equal to zero. The former term equals to zero implies
that u is a piecewisely constant function . The latter term equals to zero implies that there are no
differences between the function values of u on all nodes including the boundary, whose value is
defined to be zero. Hence we must have u being a constant zero function.

Before proceeding we would need the following:

Theorem 2.2.2: (Trace Inequality) Let v be a function on domainΩ and H be the length ofΩ.
Then we have ∫

∂Ω
|v |2d s ≤ cH−1 ||v ||Ω2 + cH ||∇||Ω2

for some constant c. Or in 1D sense,

|v(a)|2 +|v(b)|2 ≤ cH−1 ||v ||I 2 + cH ||v ′||I 2 (2.25)

with H = |I | being the length of the interval.

2Take u to be a non-zero constant function and LHS would become zero.

7

Theorem 2.2.3: (Inverse Inequality) Let u be a function on the interval I . Then we have

||u′||2 ≤ c |I |−2||u||I 2

Or

|I |2||u′||2 ≤ c ||u||I 2 (2.26)

for some constant c.

Claim 2.2.4: We have ∑
I j

|I j | |{u′} j |2 ≤ c
∑
I j

||u′||I j

2

for some constant c.

Proof: Applying Trace Inequality and Inverse Inequality, we have∑
I j

|I j | |{u′} j |2

(Trace., equation (14)) ≤ ∑
I j

|I j |
(
ĉ |I j

−1|||u′||I j

2 + ĉ |I j | ||u′′||I j

2
)

= ĉ
∑
I j

(
|I j ||I j |−1||u′||I j

2 +|I j |2 ||u′′||I j

2
)

= ĉ
∑
I j

(
||u′||I j

2 +|I j |2 ||u′′||I j

2
)

(Inverse., equation (15)) ≤ ĉ
∑
I j

(
||u′||I j

2 + č ||u′||I j

2
)

= c
∑
I j

||u′||I j

2

for some constant c.

Claim 2.2.5: We have ∑
I j

{u′} j [u] j ≤ c1δ
∑
I j

||u′||I j

2 + c2

δ

∑
I j

1

I j
| [u] j |2

for some constant c1,c2.

Proof: ∑
I j

{u′} j [u] j

≤ ∑
I j

|{u′} j ||[u] j |

(AM-GM.) ≤ ∑
I j

(δ
2
|I j ||{u′} j |2 + 1

δ|I j |
[u] j

2
)

(Claim 2.2.4) ≤ ∑
I j

c1δ ||u′||I j

2 +∑
I j

1

δ|I j |
[u] j

2

= c1δ
∑
I j

||u′||I j

2 + c2

δ

∑ 1

|I j |
|u|I j

2

8

for arbitrary constant δ and some constant c1,c2.

Finally cleaning up:

a(u,u)− A ||u||1,h
2

(equation (12), Def. 2.2.1) =
(∑

I j

||u′||I j

2 −2
∑
I j

{u′} j [u′] j +
∑
I j

γ

|I j |
|[u] j |2

)
− A

(∑
I j

||u′||I j

2 +∑
I j

|I j ||{u′} j |2 +
∑
I j

γ

|I j |
|[u] j |2

)

= (1− A)
∑
I j

||u′||I j

2 + (1− A)
∑
I j

γ

I j
|[u] j |2

−2
∑
I j

{u′} j [u′] j − A
∑
I j

|I j ||{u′} j |2

(Claim 2.2.4, 2.2.5) ≥ (1− A)
∑
I j

||u′||I j

2 + (1− A)
∑
I j

γ

I j
|[u] j |2

−
(
c1δ

∑
I j

||u′||I j

2 + c2

δ

∑ 1

|I j |
|u|I j

2
)
− c3 A

∑
I j

||u′||I j

2

= (1− A− c1δ− c3 A)
∑
I j

||u′||I j

2 + (γ−γA− c2

δ
)
∑
I j

1

|I j |
|[u] j |2

≥ 0

for γ large enough3 according to the chosen A and δ, which is equivalent to equation (13). Q.E.D.

3For instant, choose A = 1/(2c3) and δ = −1/(2c1c3), then take γ≥ (4c1c2c3
2)/(1−2c3).

9

2.5 GENERAL DISCOUNTINOUS GALERKIN METHOD (DG-FEM)

Consider the general problem:
−4u = f inΩ

u = gD on ΓD
∂u
∂n = gN on ΓN

(2.27)

which is the Poisson’s Equation −4u = f , where f is given and u is the unknown function on a
domainΩ, together with the given gD on boundary ΓD (Dirichlet boundary condition) and the given
gN on boundary ΓN (Neumann boundary condition).The domainΩ can be of different dimension.
The following figure shows an example of a 2D domain.

Figure 2.2: Example of a 2D domain

Multiply each side by test function v and using integration by part, we have

−
∫
Ω
4u v d x =

∫
Ω
∇u ·∇v d x −

∫
∂Ω

(∇u ·n) v d s

=
∫
Ω
∇u ·∇v d x −

∫
∂Ω

∂u

∂n
v d s

=
∫
Ω

f v d x (2.28)

in which we have reduced the equation from the strong form to a more desirable weak form.

Take 2D problem as an example of the general case. We would like to approximate u by a linear
combination of some chosen basis functions in a finite element space. We may consider partitioning
the domain into finite elements in the form of triangles:

Figure 2.3.b: Partition of a 2D domain in triangles and edge sets: E I
h , E D

h and E N
h

Denote a triangle by K and its diameter by h, we let Th be the set of all triangles and define the
following sets:

E I
h = {eh : eh = ∂K +∩∂K − ∀K ∈Th}: set of interior edges

E D
h = {eh : eh = ∂K +∩ ΓD ∀K ∈Th}: set of boundary edges on ΓD

E N
h = {eh : eh = ∂K +∩ ΓN ∀K ∈Th}: set of boundary edges on ΓN

Eh = E I
h ∪E D

h .

(2.29)

10

(Note that the signs of the triangles are declared relatively; and interior edges must align with
triangles of different signs. Triangles at the boundary are always denoted by K +.) Thus now we can
make our choice of basis functions to be discontinuous across the edges, and proceed on DG-FEM.
Take v to be the chosen basis functions, we then have

−
∫
Ω
4u v d x = − ∑

K∈Th

∫
K
4u v d x

= ∑
K∈Th

∫
K
∇u ·∇v d x − ∑

K∈Th

∫
∂K

∂u

∂n
v d s

= ∑
K∈Th

∫
K
∇u ·∇v d x − ∑

eh∈E D
h

∫
eh

∂u

∂n
v d s − ∑

eh∈E N
h

∫
eh

∂u

∂n
v d s

− ∑
eh∈E I

h

∫
eh

(∂u+

∂nn+ v++ ∂u−

∂nn− v−
)
d s

=
∫
Ω

f v d x (2.30)

We wish to find out a symmetric bilinear function ah(u, v), whose stiffness matrix is positive definite,
to solve for the unknown u. For simplicity, we denote∫

k
f g d x ≡ (f , g)K and

∫
eh

f g d s ≡< f , g >eh

Also we define the notations {·}, [·] on function and norm derivative:

{u} ≡ 1

2
(u++u−) and [u] ≡ u+−u−

{∂nu} ≡ 1

2

(∂u+

∂n+ + ∂u−

∂n+
)

and [∂nu] ≡ ∂u+

∂n+ − ∂u−

∂n+ (2.31)

then look into the term regarding the set of interior edges. By noticing the direction of the norm
derivatives and the continuity of u, we have

∑
eh∈E I

h

∫
eh

(∂u+

∂n+ v++ ∂u−

∂n− v−
)

d s = ∑
eh∈E I

h

∫
eh

(∂u+

∂n+ v+− ∂u−

∂n+ v−
)

d s

= ∑
eh∈E I

h

(
< ∂u+

∂n+ , v+ >eh −< ∂u−

∂n+ , v− >eh

)
(after rearranging) = ∑

eh∈E I
h

(< {∂nu} , [v] >eh +< [∂nu] , {v} >eh

)
(since [∂nu] = 0) = ∑

eh∈E I
h

< {∂nu} , [v] >eh (2.32)

Rewrite equation (19) with the notations defined, we have :

−(4u, v) = ∑
K∈Th

(∇u,∇v)K − ∑
eh∈E I

h

< {∂nu} , [v] >eh −
∑

eh∈E D
h

< ∂nu, v >eh

− ∑
eh∈E N

h

< ∂nu, v >eh

= (f , v) (2.33)

To make the expression in the left hand side symmetric on u, v , we add the artificial terms

− ∑
eh∈E I

h

< {∂n v} , [u] >e and − ∑
eh∈E D

h

< ∂n v,u >eh

11

Notice that the first term equals to 0 since [u] = 0 by continuity of u. In the second term, u = gD which
is given, so we add this term to both sides of the equation. Also

∑
eh∈E N

h
< ∂nu, v >eh=

∑
eh∈E N

h
< gN , v >

is known, so this term is moved to the right hand side.

To make the bilinear form coercive (positive definite), we add the penalty terms∑
eh∈E I

h

γ

|eh |
< [u] , [v] >eh= 0 and

∑
eh∈E D

h

γ

|eh |
< u, v >eh=

∑
eh∈E D

h

γ

|eh |
< gD , v >eh .

The first and second terms are added to the left hand side, while the third term is added to the right
hand side. With the unknown values stay in the left hand side and away from the right hand side, we
may define the left hand side as a bilinear form ah(u, v):

ah(u, v) ≡ ∑
K∈Th

(∇u,∇v)K − ∑
eh∈E I

h

(
< {∂nu} , [v] >eh +< {∂n v} , [u] >eh −

γ

|eh |
< [u] , [v] >eh

)
− ∑

eh∈E D
h

(
< ∂nu, v >eh +< ∂n v,u >eh −

γ

|eh |
< u, v >eh

)
(2.34)

Note that the penalty terms are added to the interior and Dirichlet edges but not to the Neumann
edges. This is because the Neumann boundary terms have been moved to the right hand side.

Also, adopting the notation that on the boundary edges

{∂nu} = ∂nu, {∂n v} = ∂n v, [u] = u, [v] = v,

then we can write the bilinear form in equation (2.25) as a more compact form (recall that Eh = E I
h∪E D

h)

ah(u, v) ≡ ∑
K∈Th

(∇u,∇v)K − ∑
eh∈Eh

(
< {∂nu} , [v] >eh +< {∂n v} , [u] >eh −

γ

|eh |
< [u] , [v] >eh

)
(2.35)

We also define the right hand side, which depends only on v and is composited of known values, as
a function F (v) by

F (v) ≡ (f , v)+ ∑
eh∈E D

h

(γ

|eh |
< gD , v >eh −< gD ,∂n v >eh

)
+ ∑

eh∈E N
h

< gN , v >eh (2.36)

12

3 CONSTRUCTION OF THE STIFFNESS MATRIX

Overview: In this section, the main idea and technics used in the construction of the stiffness matrix
will be introduced.

3.1 MAIN IDEA OF THE CONSTRUCTION

To start, let’s assume there is a domainΩ, whose boundary ∂Ω consists of ΓD and ΓN , and look at the
following problem.

−4u = f inΩ

u = gD on ΓD
∂u
∂n = gN on ΓN

(3.1)

To approximate the function value u, we need to choose some points in this domain as our nodal

Figure 3.1: A random 2D mesh

points, which we can calculate their exact values and then use them to produce a interpolotation.
We denote the set of such points by N = {N1, N2, ...}. Then we can devide the domain into several
elements, according to the points we choose. In 2D case, we usually divided the domain into triangles
or rectangles; in 3D case, we usually divided the domain into tetrahedrons or cubes. In figure 3.1, we
devide a 2D domain into a combination of triangles. After that, a set of basic functions, corresponding
to the point we choose, should be set to do the approximation. That is, whatever those nodal points’
value are, we can use the set of basic functions to form a linear combination, which can exactly fit
in those values. In this way, the set of functions can be used to represent the value of every point we
choose.

However, since the mesh varies from one to another, finding the basic functions and doing the
subsequent calculation is quite hard to be finished directly in the original mesh. As a result, we choose
to set a master cell (or master element), whose shape is relatively ’beautiful’ and thus it’s easy to find
the basic functions for it. Then for every calculation we need to do in the elements in mesh, we can
do the same operation in master cell first, since all the information we need is already known or easy
to get for the master cell. As for the calculation in elements, we will use maps, which connect the
elements and the master cell, to transform the result get from the master cell to what we want. The
map from the master cell to each element in the mesh, while different from element to element, can
be set easily, since we know the coordinate of all the nodes in the mesh. Following such steps, all the
calculation can be finished in the master cell and will be much simpler. All we need to do is to store

13

the template, which contains the value calculated in the master cell, and find out the map from each
element to the master cell.

14

3.2 THE MASTER CELL AND THE BASIC FUNCTION

As the first step, we need to set our master cell. For convenience and simplicity, we always choose the
origin and those points which are 1 unit away from the origin on the axis to form the standard master
cell. The following figures shows the master cell we use for 2D case, which is a triangle, and 3D case,
which is a tetrahedron.

Figure 3.2: master cell for 2D: a triangular

Figure 3.3: master cell for 3D: a tetrahedron

There are two main advantages of setting in this way. Firstly, the basic functions of the master
cell will be easy to find, since its shape is quite ’beautiful’. Secondly, all the subsequent integrations,
especially the integrations on the edge or face, will be respectively easy to calculate.

How to find the basic functions for the master cell? Basically, we use lagrange interplotation method.
Take 2D case as an example. There are several steps we can follow:

step 1 decide degree of our basic functions

step 2 decide the degree of freedom

step 3 choose the set of nodal points

step 4 find the set of basic functions for master cell

The first step we take is to decide what degree our basic functions are. In general, the higher degree
of basic functions is, the higher the accuracy is. At the same time, the complexity of calculation will
also be higher. In a word, the accuracy of the approximation you want and the cost of calculation you
can afford determine the degree of the basic funcifons you use.

15

Figure 3.4: Point we choose for quadratic basic functions

The second step is to decide the degree of freedom. It is followed by the first step. If you choose
linear functions, then we need two points on each eage to make the function exact. So the degree of
freedom is 3. If you choose quadratic functions, then we need three points on each eage to make the
function exact. So the degree of freedom is 6.

Then we need to choose the nodal points. For convenience, we usually use those special points.
When the degree of freedom is 3, we choose 3 vertex of the triangle as our nodal points. When the
degree of freedom is 6, we will add the midpoint of each edge to our nodal point set.

Finally, we can decide the basic functions. By Lagrange interpolatation mathod, each nodal point Ni

in the master cell has a corresponding basic function φi so that φ j (Ni) = 1 when j = i and φ j (Ni) = 0
when j 6= i . Hence, the number of basic functions always equal to the degree of freedom.

For example, if we use linear basic funcion, then the degree of freedom is 3.

Let k = master triangle

Pk = p1(k) = span{1, x, y}

The we have basic functions: φ1 = x φ2 = y φ3 = 1−x − y

where φ1, φ2, φ3 are corresponding function to point A, B, C respectively.(in Figure3.2) If we use
quadratic basic functions, then the degree of freedom becomes 6.

Let k = master triangle

Pk = p2(k) = span{1, x, y, x2, y2, x y}

The we have basic functions:

φ1 = 2x(0.5−x) φ2 = 2y(0.5− y) φ3 = 2(1−x − y)(0.5−x − y)

φ4 = 4y(1−x − y) φ5 = 4x(1−x − y) φ6 = 4x y

16

3.3 THE MAP FROM MASTER CELL TO ELEMENTS IN MESH

After set down the master cell, we need to calculate the map from master cell to mesh element. Note
that the information we need now from the map is only how each nodal point in elements map to
the master cell. For example, suppose the nodal points of the master cell is [A,B ,C] for 2D case, and
we have a master element whose nodal points are[c,b, a], what we only need to know is how [A,B ,C]
match [c,b, a]. For convenience of programmming, we usually map them in order. That is, we map c
to A, b to B, a to C. Then we have the map already.

Then we need to calculate some other information about the map. Here we use isomorphic map in
2D case for example, and 3D case is exactly the same. Suppose there is a local node points (x j , y j),
j = 1,2, ..., M in mesh element K . Also, suppose we have a nodal point (x̂ j , ŷ j), j = 1,2, ..., M in master
cell and corresponding basic functions φ̂ j (x̂ j , ŷ j), j = 1,2, ..., M . Note that M is the value of the degree
of freedom. Then for every point (x, y) in K , we have the following map Te:{

x =∑M
j=1 x j φ̂ j (x̂ j , ŷ j)

y =∑M
j=1 y j φ̂ j (x̂ j , ŷ j)

(3.2)

Since φ̂ j (x̂ j , ŷ j) is known for 1 ≤ j ≤ M , so we can easily write out the expression of x̂ and ŷ with x and
y : (

x
y

)
= A

(
x̂
ŷ

)
+~b (3.3)

Through this formula we can compute some other things, like jacobian of A and A′, which will be
used in the later computation.

Now we use an example to make things clearer. Suppose we have the same master triangle k̂ as
what is shown in figure 3.2 and another triangle element k. We set the basic functions for k̂ is like the
following:

φA = x̂

φB = ŷ

φC = 1− x̂ − ŷ

(3.4)

Then for any point (x, y) in triangle k, we have{
x = xaφA +xbφB +xcφC

y = yaφA + ybφB + ycφC
(3.5)

After simplification, we will get{
x = (xa −xc)x̂ + (xb −xc)ŷ +xc

y = (ya − yc)x̂ + (yb − yc)ŷ + yc
(3.6)

after transformation, the equation becomes:(
x
y

)
=

(
xa −xc xb −xc

ya − yc yb − yc

)
∗

(
x̂
ŷ

)
+

(
xc

yc

)
(3.7)

So we have

(
xa −xc xb −xc

ya − yc yb − yc

)
=

(
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

)
(3.8)

17

and the jacobian

J(x̂,ŷ) = det

(
xa −xc xb −xc

ya − yc yb − yc

)
(3.9)

Then we can write out the inverse formulation(
x̂
ŷ

)
= 1

|J(x̂,ŷ)|
(

ya − yc xc −xb

yc − ya xb −xc

)
∗

(
x −xc

y − yc

)
(3.10)

Then we can get

1

|J(x̂,ŷ)|
(

xa −xc xb −xc

ya − yc yb − yc

)
=

(
∂x̂
∂x

∂x̂
∂y

∂ŷ
∂x

∂ŷ
∂y

)
(3.11)

Then we have the information we need in later integration.
Notice that the above map can can be written in a more general form:

~x = (
~x1 − ~x0 ~x2 − ~x0 ... ~xM − ~x0

)∗~̂x + ~x0 (3.12)

which can be expanded to higher dimensional cases.

18

3.4 ELEMENT-ELEMENT TERM

Now we look back to the general equation ah(u, v) = F (v) and try to construct the matrix according to
this eqation. Before we start, we will give a general look at the problem. The aim is to build the LHS
stiffness matrix A. The matrix A is a combination of several local blocks. In general, the size of one
local block is M ×M , where M is the degree of freedom of each elements. Also, there will be K ×K
local blocks in the global matrix, where K is the number of elements. Hence the size of the glbal matrix
is K M ×K M .

The local block is the basic unit in our calculation. The diagonal local blocks, for instance, the (i , i)
block, describe the integration inside the i-th elements. The non-diagonal local blocks, for instance,
the (i , j) and (j , i) block, describe the integration on the common edge (or face) between the i-th and
j-th elements. Hence we will find the final global matrix is sparse, since (i , j) block will be zero block
when i 6= j and the i-th and j-th element have no common edge (or face).

We would like to use the notation a(φ(k1)
j ,φ(k2

i))to represent the (i , j) element of (k2,k1) block. Recall
that

ah(u, v) ≡ ∑
K∈Th

(∇u,∇v)K − ∑
eh∈Eh

(
< {∂nu} , [v] >eh +< {∂n v} , [u] >eh −

γ

|eh |
< [u] , [v] >eh

)
We can devide it into three parts:

1. range over cell

2. range over interior edges

3. range over boundary (Dirichilet) edges

In our practical compuatation, we calculate these three parts separately. In this section we will
discuss the first part, the integration inside the element, which we called it element-element term.

As mentioned before, we need to map the function integrated into the basic functions of master
element. When for 2D case, it goes like this:∫

k
∇u∇vd s =

∫ ∫
(
∂u

∂x
,
∂u

∂y
)

˙
(
∂v

∂x
,
∂v

∂y
)d xd y

=
∫ ∫

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
)d xd y

=
∫ ∫ [(∂u

∂x̂

∂x̂

∂x
+ ∂u

∂ŷ

∂ŷ

∂x

)(∂v

∂x̂

∂x̂

∂x
+ ∂v

∂ŷ

∂ŷ

∂x

)+
(∂u

∂x̂

∂x̂

∂y
+ ∂u

∂ŷ

∂ŷ

∂y

)(∂v

∂x̂

∂x̂

∂y
+ ∂v

∂ŷ

∂ŷ

∂y

)]|J(x̂,ŷ)|d x̂d ŷ

=
∫ ∫

F (x̂, ŷ)d x̂d ŷ

(Gaussian quadrature) =∑
wi F (x̂i , ŷi)

19

And for 3D case, which is almost the same, we have:∫
k
∇u∇vd s =

∫ ∫
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z
)

˙
(
∂v

∂x
,
∂v

∂y
,
∂u

∂z
)d xd yd z

=
∫ ∫

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
+ ∂u

∂z

∂v

∂z
)d xd yd z

=
∫ ∫ [(∂u

∂x̂

∂x̂

∂x
+ ∂u

∂ŷ

∂ŷ

∂x
+ ∂u

∂ẑ

∂ẑ

∂x

)(∂v

∂x̂

∂x̂

∂x
+ ∂v

∂ŷ

∂ŷ

∂x
+ ∂v

∂ẑ

∂ẑ

∂x

)+
(∂u

∂x̂

∂x̂

∂y
+ ∂u

∂ŷ

∂ŷ

∂y
+ ∂u

∂ẑ

∂ẑ

∂y

)(∂v

∂x̂

∂x̂

∂y
+ ∂v

∂ŷ

∂ŷ

∂y
+ ∂v

∂ẑ

∂ẑ

∂y

)+
(∂u

∂x̂

∂x̂

∂z
+ ∂u

∂ŷ

∂ẑ

∂z
+ ∂u

∂ẑ

∂ẑ

∂z

)(∂v

∂x̂

∂x̂

∂z
+ ∂v

∂ẑ

∂ẑ

∂z
+ ∂v

∂ẑ

∂ẑ

∂z

)]|J(x̂,ŷ ,ẑ)|d x̂d ŷd ẑ

=
∫ ∫

F (x̂, ŷ , ẑ)d x̂d ŷd ẑ

(Gaussian quadrature) =∑
wi F (x̂i , ŷi , ẑi)

where |J(x̂,ŷ)| and |J(x̂,ŷ ,ẑ)|is the jacobian of the transformation map, which is introduce in Section

3 Also, since we have the map, the value of these terms like ∂x̂
∂x , ∂x̂

∂y , ∂x̂
∂z , ∂ŷ

∂x , ∂ŷ
∂y and ∂ŷ

∂z are known,
which we have introduce the method to calculate them in Section 3 as well. So we can calculate the
element-element term directly.

Since this kind of integration is integration over the cell, so all the information it need is those
basic functions of that cell. So the blocks for element item can only appear in diagonal blocks.∑

k (∇φk1
j ,∇φk2

i) will only be nonzero when k1 = k2 = T , which is a part of the (i,j) element of (T,T)
block.

20

3.5 INTERIOR TERM

Now we move to the second cases, that is, integration on interior edges. This kind of case is much
more complicate to calculate than the element item. We now list the formula for them first.

Fix e ∈ E I
h , there is only four blocks are nonzeros

Figure 3.5: An interior edge between two elements

• a(φk+
j ,φk+

i): the (i , j) element of (k+,k+) block.

• a(φk−
j ,φk−

i): the (i , j) element of (k−,k−) block.

• a(φk+
j ,φk−

i): the (i , j) element of (k−,k+) block

• a(φk−
j ,φk+

i): the (i , j) element of (k+,k−) block

Use I (φk1
j ,φk2

i) to denote the interior jump term between k1 and k2. Then

I (φk+
j ,φk+

i) =−∑
e

(1

2
< ∂n(φk+

j)++∂n(φk+
j)−), (φk+

i)+− (φk+
i)− >e

+ 1

2
< ∂n(φk+

i)++∂n(φk+
i)−), (φk+

j)+− (φk+
j)− >e

− γ

|en |
< (φk+

j)+− (φk+
j)−, (φk+

i)+− (φk+
i)− >e

)
=− 1

2
< ∂n(φk+

j)+, (φk+
i)+ >e −1

2
< ∂n(φk+

i)+, (φk+
j)+ >e + γ

|en |
< (φk+

j)+, (φk+
i)+ >e

(3.13)

I (φk−
j ,φk−

i) =−∑
e

(1

2
< ∂n(φk−

j)++∂n(φk−
j)−), (φk−

i)+− (φk−
i)− >e

+ 1

2
< ∂n(φk−

i)++∂n(φk−
i)−), (φk−

j)+− (φk−
j)− >e

− γ

|en |
< (φk−

j)+− (φk−
j)−, (φk−

i)+− (φk−
i)− >e

)
=+ 1

2
< ∂n(φk−

j)−, (φk−
i)− >e +1

2
< ∂n(φk−

i)−, (φk−
j)− >e + γ

|en |
< (φk−

j)−, (φk−
i)− >e

(3.14)

I (φk+
j ,φk−

i) =−∑
e

(1

2
< ∂n(φk+

j)++∂n(φk+
j)−), (φk−

i)+− (φk−
i)− >e

+ 1

2
< ∂n(φk−

i)++∂n(φk−
i)−), (φk+

j)+− (φk+
j)− >e

− γ

|en |
< (φk+

j)+− (φk+
j)−, (φk−

i)+− (φk−
i)− >e

)
=− 1

2
< ∂n(φk+

j)+, (φk−
i)− >e −1

2
< ∂n(φk−

i)−, (φk+
j)+ >e − γ

|en |
< (φk+

j)+, (φk−
i)− >e

(3.15)

21

I (φk−
j ,φk+

i) =−∑
e

(1

2
< ∂n(φk−

j)++∂n(φk−
j)−), (φk+

i)+− (φk+
i)− >e

+ 1

2
< ∂n(φk+

i)++∂n(φk+
i)−), (φk−

j)+− (φk−
j)− >e

− γ

|en |
< (φk−

j)+− (φk−
j)−, (φk+

i)+− (φk+
i)− >e

)
=− 1

2
< ∂n(φk−

j)−, (φk+
i)+ >e +1

2
< ∂n(φk+

i)+, (φk−
j)− >e − γ

|en |
< (φk−

j)−, (φk+
i)+ >e

(3.16)

The calculation of each item is relatively complex. We need to do line integration for 2D case and
face integration for 3D case. Also, the way we use Gaussian quadratra is different from case to case,
depend on the degree of freedom and the dimension. We would rather put this part into the later
example explantion.

22

3.6 BOUNDRY TERM

Bacially, the boundry term is a special case of interior jump term. Since we set all the boundry edge
(or face) as the plus edge (or face), so boundry term is actually the plus-plus term. So we have:

Fix e ∈ E D
h , there is only one blocks (k+,k+) is nonzero for boundary term.Also, all of the formula of

the boundry term is very similar to the interior term, include the penalty term and the jump term.
As we now have figure out all the term we need for the stiffness matrix, we then can start to construct

it. In later sections several examples will be shown to give a grenral picture of how it works.

23

4 1D EXAMPLE OF DG-FEM

Overview:In this section , we will show a simple example of DG-FEM to solve a 1D heat equation.

Consider the following 1D-problem, involving a differential equation with boundary conditions:

−u′′ = f =−2

u(0) = 0
u(1) = 0

(4.1)

Recall the 1D problem (1) in Section 2.1. Suppose now the problem is defined on I = [0,1] and we
have f =−2, u(0) = 0 and u(1) = 1. The solution can be found explicitly as u = x(2−x), but now we try
to solve for the approximation uh using DG-FEM.

STEP 1. PARTITION THE DOMAIN The accuracy of the approximation as well as the computational
cost increase with the number of cells (which are intervals in 1D). In this example, we take number of
cells equal to 4 (so N = 3): I0 = [0,0.25], I1 = [0.25,0.5], I2 = [0.5,0.75] and I3 = [0.75,1].

STEP 2. CHOOSE THE BASIS FUNCTIONS We want each u
(I j)
h to be approximated by a linear combi-

nation of a set of basis functions within each interval I j . These chosen basis functions also take the
role as the test function v . We may make our choice of the basis functions to be linear, quadratic or
polynomials in higher degree to improve the performance.

Legendre polynomials and lagrange polynomials are some of the popular choices. In this example,
the set of linear lagrange polynomials φ̂0 = 1− x, φ̂1 = x over the master interval [0,1] is chosen for

use. It would need to be mapped into the corresponding set of functions φ
(I j)
0 ,φ

(I j)
1 over the local

interval I j for each j afterwards to serve our purpose.

STEP 3. CONSTRUCT THE MATRIX In equation (11) we know that each entry Si j of our stiffness
matrix S is defined by the bilinear symmetric function a(φ j ,φi). In our choice of φ, each of the four
intervals has 2 degree of freedom. Thus S is a 8×8 matrix, with each parameter of a runs across all
φ

(I0)
0 ,φ(I0)

1 ,φ(I1)
0 ,φ(I1)

1 , ... ,φ(I3)
0 ,φ(I3)

1 .

a(φ(I0)
0 ,φ(I0)

0) a(φ(I0)
1 ,φ(I0)

0) a(φ(I1)
0 ,φ(I0)

0) a(φ(I1)
1 ,φ(I0)

0) · · ·
a(φ(I0)

0 ,φ(I0)
1) a(φ(I0)

1 ,φ(I0)
1) a(φ(I1)

0 ,φ(I0)
1) a(φ(I1)

1 ,φ(I0)
1)

a(φ(I1)
0 ,φ(I1)

0) a(φ(I1)
1 ,φ(I1)

0)
. . .

a(φ(I1)
0 ,φ(I1

1) a(φ(I1)
1 ,φ(I1)

1)
...

Note that this global matrix is composed by blocks of 2×2 local matrices, and each block stores

information of basis functions interaction within or across intervals. The four diagonal blocks store
those interactions within an interval, the six sub-diagonal blocks store those interactions across
adjacent intervals, and other blocks store zeros – since the basis function values are non-zero only if
they are within or on the boundary of their defined intervals.

Recall that a is defined as

a(u, v) ≡
j=N∑
j=0

∫ x j+1

x j

u′v ′+
j=N+1∑

j=0

(
{u′} j [v] j + {v ′} j [u] j︸ ︷︷ ︸

symmetric term

)
+γ

N+1∑
j=0

1

|I j |
[u] j [v] j︸ ︷︷ ︸

penalty term

(4.2)

24

where {·} j is the average of jump on x j and [·] j is the jump on x j as defined in equation (8). Let
ku ,kv ∈ {0,1} be the indices of basis functions within the set that serve the role for the trial function u
and the test function v respectively. We now look into the computation of each part of the equation.

STEP 3.1. COMPUTE
∫

I j
u′v ′. From the summation sign in equation (9), we know that this term is

computed with respect to intervals, so only the diagonal blocks are involved. The term∫
I j

φ
′(I j)
ku

φ
′(I j)
kv

may be computed by first considering φ
′(I j)
ku

φ
′(I j)
kv

. It can be mapped from φ̂′
ku
φ̂′

kv
with a note to the

change in slope of the basis functions from the master interval [0,1] to the local interval I j .

Figure 3.a: Mapping from master interval to local interval

Afterwards integration can be done explicitly or using Gaussian Quadratures. The detail of the
calculation is as following:

Let the master cell k̂ be the [0,1] segment. Then we have for any segment k, we have∫
k
∇u∇vd s =

∫
k

∂u

∂x

∂v

∂x
d s

=
∫

k

∂u

∂x̂

∂x̂

∂x

∂v

∂x̂

∂x̂

∂x
d s

= |k|
|k̂|

∫
k̂

∂u

∂x̂

∂x̂

∂x

∂v

∂x̂

∂x̂

∂x
d ŝ

(4.3)

Then we can calculate the value of them. Take the first interval as an example. Then

• u =φ(I0)
0 v =φ(I0)

0
1
4

∫ 1
0 (−1)∗4∗ (−1)∗4d x = 4

• u =φ(I0)
0 v =φ(I0)

1
1
4

∫ 1
0 (−1)∗4∗1∗4d x =−4

• u =φ(I0)
1 v =φ(I0)

0
1
4

∫ 1
0 1∗4∗ (−1)∗4d x =−4

• u =φ(I0)
1 v =φ(I0)

1
1
4

∫ 1
0 1∗4∗1∗4d x = 4

So the local block is (
4 −4
−4 4

)
(4.4)

STEP 3.2. COMPUTE {u′} j [v] j + {v ′} j [u] j . This term is computed with respect to nodes which stand
between adjacent intervals, so for each node x j both the (j −1)-th, j -th diagonal block and the related
sub-diagonal blocks are involved. Now since

{φ′
ku

} j [φkv] j + {φ′
kv

} j [φku] j

25

is symmetric on φku ,φkv , so we may first look at the left term. After expansion we get the expression

{φ′
ku

} j [φkv] j

= 1

2

(
φ′

ku
(x+

j)+φ′
ku

(x−
j)

)(
φkv (x+

j)−φkv (x−
j)

)
= 1

2
φ′

ku
(x+

j)φkv (x+
j) − 1

2
φ′

ku
(x+

j)φkv (x−
j) + 1

2
φ′

ku
(x−

j)φkv (x+
j) − 1

2
φ′

ku
(x−

j)φkv (x−
j) (4.5)

which contains four terms: the "++" term, "+−" term, "−+" and "−−" term respectively.

Figure 3.b: the "++" term, "+−" term, "−+" term and "−−" term and their positions

Recall in Figure 2.1.b that x+
j and x−

j denote the right interval and left interval from x j respectively,

thus we may now see that the "++" term is non-zero only if both φ′
ku

and φkv are from I j ; so this term

is added to the j -th diagonal block. The "+−" term is non-zero only if φkv is on I j−1 and φ′
ku

is on I j ;
so this term is added to the right sub-diagonal block of the (j −1)-th diagonal block. Similarly the
"−+" term is added to the left sub-diagonal block of the j -th diagonal block, and the "−−" term is
added to the (j −1)-th diagonal block.

The expansion of the right term {φ′
ku

} j [φkv] j is similar and the resultant four terms may be added to
the corresponding blocks accordingly with the same principle.

Here, we calculate the u+v+ case as an example.

1

2
((u+)′v++ (v+)′u+)

=1

2
(
∂u

∂x̂

∂x̂

∂x
v++ ∂v

∂x̂

∂x̂

∂x
u+)

=2(
∂u

∂x̂
v++ ∂v

∂x̂
u+) since

∂x̂

∂x
= 4 in this case

(4.6)

• u+ =φ(I0)
0 v+ =φ(I0)

0 2((−1)∗0+ (−1)∗0) = 0

• u+ =φ(I0)
0 v+ =φ(I0)

1 2(1∗0+ (−1)∗1) =−2

• u+ =φ(I0)
1 v+ =φ(I0)

0 2((−1)∗1+1∗0) =−2

• u+ =φ(I0)
1 v+ =φ(I0)

1 2(1∗1+1∗1) = 4

So the local block is (
0 −2
−2 4

)
(4.7)

26

STEP 3.3. COMPUTE THE PENALTY TERM. This term is computed with respect to nodes. Again we may
expand and get the four "++", "+−", "−+", "−−" terms:

γ

|I j |
[φku] j [φkv] j

= γ

|I j |
(
φku (x+

j)−φku (x−
j))

)(
φkv (x+

j)−φkv (x−
j)

)
= γ

|I j |
φku (x+

j)φkv (x+
j) − γ

|I j |
φku (x+

j)φkv (x−
j) − γ

|I j |
φku (x−

j)φkv (x+
j) + γ

|I j |
φku (x−

j)φkv (x−
j)

and added to the corresponding blocks respectively following Step 3.2. (note that when φku , φkv come
from adjacent intervals, the value |I j | in the term is computed as the average of |I j−1| and |I j | instead).
The choice of γ is arbitrary – as long as it is "large enough" (see Section 2.2) with respect to the degree
of polynomial chosen for the basis functions. In this example, we choose γ= 5.

NOTE 1: AT BOUNDARY NODES. For Step 3.2 and 3.3, we have to be more careful when working on
the boundary nodes. Clearly at x0, we have only the "++" term, while at xN+1 we have only the "−−"
term, since on these two nodes we are working on intervals I0 and IN only and their adjacent intervals
are not defined .

For the same reason, an "average jump" {·} of a function on the boundary node is defined to
be the function value at that node itself within the defined interval (while a "jump" [·] is defined
as the function value of x+

j minus by that of x−
j for all nodes. Recall that on boundary nodes, we

define x−
0 = x+

N+1 = 0). For example, at Step 3.2, we have the term {φ′
ku

}0[φkv]0 =φ′
ku

(x+
0)φkv (x+

0) and

{φ′
ku

}N+1[φkv]N+1 = φ′
ku

(x−
N+1)

(−φkv (x−
N+1)

)
, which are added to the 0-th diagonal block and N -th

diagonal block respectively.

NOTE 2: PRE-COMPUTATION. Before Step 3, we may pre-compute the terms φ̂ku φ̂kv , φ̂′
ku
φ̂kv ,

φ̂′
ku
φ̂′

kv
for each ku ,kv = {0,1} and for each " ++", " +−", " −+", " −−" term on the master in-

terval. They will come into handy when we are working on the bilinear function – since mapping
the computed terms from the master interval to local intervals requires only easy linear transformation.

The below shows the actual figures from each step of the matrix construction in our example:

27

Figure 3.c. Step-by-step illustration of matrix construction

STEP 4. CONSTRUCT THE R.H.S. VECTOR Rewrite equation (11) with the defined notation, we will
have the right hand side vector equal to∫

I j

f φ
(I j)
kv

+ {φ′
kv

} j [φku] j︸ ︷︷ ︸
symmetric term

+ γ

|I j |
[φku] j [φkv] j︸ ︷︷ ︸

penalty term

(4.8)

which is a 8×1 vector in our example. The integral term is computed with respect to intervals, which
can be found explicitly or by Gaussian Quadrature with careful handle of the basis functions mapping
from the master intervals to local intervals. For the symmetric term and the penalty term which are to
be computed with respect to nodes, notice that we define the jump [φku] j to be zero for all internal
nodes since u is continuous. Hence we only need to consider those on boundary nodes x0 and xN+1

and add them to the I0 position and IN position of the vector accordingly.
Notice that the jump [φku]0 is essentially u(a) and [φku]N+1 is essentially −u(b). With respect to

Note 1 in Step 3, we then obtain our boundary symmetric terms φ′
kv

(x+
0)u(a) and φ′

kv
(x−

N+1)
(−u(b)

)
,

28

and also the boundary penalty terms γ
|I0|u(a)(φkv (x+

0)) and γ
|IN |

(−u(b))
(−(φkv (x−

N+1))
)
. They are added

to the I0-th and IN -th position of the vector. Substituting everything we would get our final R.H.S.
vector

[0.25 0.25 0.25 0.25 0.25 0.25 4.25 16.25]T

STEP 5. SOLVE THE LINEAR SYSTEM. With the given matrix and R.H.S. vector, we may now solve
the linear system. In C programming, we may use the dense matrix solver dgesv in LAPACK, which
implements the LU decomposition with partial pivoting and row interchanges:

dgesv_(size_Of_Global_Matrix, number_Of_RHS,

pointer_To_Global_Matrix, leading_Dimension_Of_Global_Matrix,

pivot_Indices,

pointer_To_Solution, leading_Dimension_Of_Solution,

info);

and our uh approximation, illustrated by M atl ab, would be as follow:

Figure 3.d. Approximation of u using DG-FEM.

29

5 2D EXAMPLE OF DG-FEM

Overview:In this section , we will show a simple example of DG-FEM to solve a 2D heat equation.

Consider the following 2D-problem, involving a differential equation with boundary conditions:

{ −∇u = f = 0
u = 1 on ∂Ω

(5.1)

where theΩ is a square, whose four vertex are (0,0), (0,1), (1,0)(1,1)

Just as what we do in the iD case, There are several steps we need to do.

STEP 1. PARTITION THE DOMAIN Here, we divide the mesh into eight equilibrium triangles, where
the mesh after division is given as the figure 5.1 shows. For convinence, we number the points, edges
and elements. Also, we define the plus and minus side of each esge as well.

Figure 5.1: The 2D mesh we use

To make it clear to see, we represent the result of partiton as a mesh table.

30

node and its coordinates
node index x y

0 0 0
1 1 0
2 1 1
3 0 1
4 0.5 0
5 1 0.5
6 0.5 1
7 0 0.5
8 0.5 0.5

cell and its node
cell index ndoe1 node2 node3

0 8 4 0
1 4 8 5
2 5 1 4
3 2 5 8
4 8 6 2
5 6 8 7
6 7 3 6
7 0 7 8

Notice here we number the node of each cell clockwisely. Actually you can number the node anyway
you like, but in this way the match of quadrature points will be simpler when we start calculation
usinng Gaussian quadratra method in integration on edge.

STEP 2. CHOOSE THE BASIS FUNCTIONS We want each u
(I j)
h to be approximated by a linear combi-

nation of a set of basis functions within each interval I j . These chosen basis functions also take the
role as the test function v . We may make our choice of the basis functions to be linear, quadratic or
polynomials in higher degree to improve the performance.

Legendre polynomials and lagrange polynomials are some of the popular choices. In this example,
the set of linear lagrange polynomials φ̂0 = x, φ̂1 = 1−x − y , φ̂2 = y over the master element is chosen

for use. It would need to be mapped into the corresponding set of functions φ
(I j)
0 ,φ

(I j)
1 ,φ

(I j)
2 over the

local element I j for each j afterwards to serve our purpose.

STEP 3. CONSTRUCT THE MATRIX We have known that each entry Si j of our stiffness is defined by the
bilinear symmetric function a(φ j ,φi). So we will calclate the 3 parts, element term, jump term and
boundry term one by one. In our choice ofφ, each of the eight intervals has 3 degree of freedom. Thus S
is a 24×24 matrix, with each parameter of a runs across allφ(E0)

0 ,φ(E0)
1 ,φ(E0)

2 ,φ(E1)
0 ,φ(E1)

1 ,φ(E1)
2 , ... ,φ(E3)

0 ,φ(E8)
1 ,φ(E8)

2 .

a(φ(E0)
0 ,φ(E0)

0) a(φ(E0)
1 ,φ(E0)

0) a(φ(E0)
2 ,φ(E0)

0) a(φ(E1)
0 ,φ(E0)

0) a(φ(E1)
1 ,φ(E0)

0) a(φ(E1)
2 ,φ(E0)

0) · · ·
a(φ(E0)

0 ,φ(E0)
1) a(φ(E0)

1 ,φ(E0)
1) a(φ(E0)

2 ,φ(E0)
1) a(φ(E1)

0 ,φ(E0)
1) a(φ(E1)

1 ,φ(E0)
1) a(φ(E1)

2 ,φ(E0)
1)

a(φ(E0)
0 ,φ(E0)

2) a(φ(E0)
1 ,φ(E0)

2) a(φ(E0)
2 ,φ(E0)

2) a(φ(E1)
0 ,φ(E0)

2) a(φ(E1)
1 ,φ(E0)

2) a(φ(E1)
2 ,φ(E0)

2)

a(φ(E0)
0 ,φ(E1)

0) a(φ(E0)
1 ,φ(E1)

0) a(φ(E0)
2 ,φ(E1)

0)
. . .

a(φ(E0)
0 ,φ(E1

1) a(φ(E0)
1 ,φ(E1)

1) a(φ(E0)
2 ,φ(E1)

1)

a(φ(E0)
0 ,φ(E1

2) a(φ(E0)
1 ,φ(E1)

2) a(φ(E0)
2 ,φ(E1)

2)
...

31

Figure 5.2: Master element

Note that this global matrix is composed by blocks of 3×3 local matrices, and each block stores
information of basis functions interaction within or across elements.

Then we start to compute each part of the equation.

STEP 3.1. COMPUTE
∫

k j
∇u∇vd s . The

∫
k j
∇u∇vd s, which we call them ’element term’, is a kind of

integration over each elements, so only the diagonal blocks are involved. Recall that∫
k
∇u∇vd s =

∫ ∫
(
∂u

∂x
,
∂u

∂y
)

˙
(
∂v

∂x
,
∂v

∂y
)d xd y

=
∫ ∫

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
)d xd y

=
∫ ∫ [(∂u

∂x̂

∂x̂

∂x
+ ∂u

∂ŷ

∂ŷ

∂x

)(∂v

∂x̂

∂x̂

∂x
+ ∂v

∂ŷ

∂ŷ

∂x

)+
(∂u

∂x̂

∂x̂

∂y
+ ∂u

∂ŷ

∂ŷ

∂y

)(∂v

∂x̂

∂x̂

∂y
+ ∂v

∂ŷ

∂ŷ

∂y

)]|J(x̂,ŷ)|d x̂d ŷ

Hence the term ∫
k j

∇φ(k j)
ku

∇φ(k j)
kv

can be calculated by mapping. Now we use ki element as an example. Then the element term of ki

will produce a 3×3 matrix. Note that we have the map from element to ki :(
x̂
ŷ

)
= 1

|J(x̂,ŷ)|
(

ya − yc xc −xb

yc − ya xb −xc

)
∗

(
x −xc

y − yc

)
(5.2)

and
1

|J(x̂,ŷ)|
(

xa −xc xb −xc

ya − yc yb − yc

)
=

(
∂x̂
∂x

∂x̂
∂y

∂ŷ
∂x

∂ŷ
∂y

)
= J (5.3)

So we can directly calculate the equation. What we still need to know is how to use Gaussian
quadrature for the last step. Here, to get the exact answer of integration of linear function, we need
only one quadrature point: t1 = (1

3 , 1
3), and the weight of it is 1. When the degree of the integrated

function becomes higher, we just need to use more quadrature points, according to the gaussian
quadrature mathod.

32

Then we can calculate the value of those functions we used at the quadratra point. For this case,
the value we may use is ∂u

∂x̂ , ∂u
∂ŷ for u = φ̂0 = x, u = φ̂1 = 1−x − y and u = φ̂2 = y . Then we can store the

result in the matrix V:

V =

∂φ̂0

∂x̂ (t1) ∂φ̂0

∂ŷ (t1)
∂φ̂1

∂x̂ (t1) ∂φ̂1

∂ŷ (t1)
∂φ̂2

∂x̂ (t1) ∂φ̂2

∂ŷ (t1)

 (5.4)

Bl ock(j j ,kk) =0.5(the coefficient of Gaussian quadrature method)∗
area of element

area of master cell
∗1(the weight of quadrature point)∗

((V (kk,1)∗ J (1,1)+V (kk,2)∗ J (1,2))∗ (V (j j ,1)∗ J (1,1)+V (j j ,2)∗ J (1,2))+
(V (kk,1)∗ J (2,1)+V (kk,2)∗ J (2,2))∗ (V (j j ,1)∗ J (2,1)+V (j j ,2)∗ J (2,2)));

Then we can get the local blocks. After putting those blocks into the corresponding diagonal blocks,
we can get the global matrix. Notice that since in our mesh, each cell is equlibrium to another, so
the value of numbers in element term in each block should be the same (the location of numbers in
blocks may be different, depending on the way of mapping).

Take element E0 as an example. The quadrature point we use is t = (1
3 , 1

3). Then we will store all the

value of ∂φ̂
∂x̂ (t) and ∂φ̂

∂ŷ (t) in V.

V =
 1 0

−1 −1
0 1

 (5.5)

Also we need to calculate the transform matrix. For E0, the transform matrix J is

V =
(

0 2
−2 0

)
(5.6)

Then according to the formula we have given above, we can get the result for the local block:

J =
 0.5 −0.5 0

−0.5 1 −0.5
0 −0.5 0

 (5.7)

33

Figure 5.3: result of element term

34

STEP 3.2. COMPUTE
∫

Ei
∂nuv +∂n vud s. This term is computed with respect to edges which stand

between adjacent element, so for each edge Ei , the two corresponding adjancent element km ,kn is
included in the calculation. As a result, the m-th, n-th diagonal block and the related sub-diagonal
blocks are involved. From section 3.5 we have known how the jump term are divided into 4 parts:
u+v+, u−v−, u+v−, u−v+. Here we need to discuss them as two cases: the fisrt is the u+v+ and u−v−

case, and the second is the u+v− and u−v+ case.
First, let’s see the u+v+ and u−v− case. Since here the two functions involved are of the same side,

so the result of the calculation will be placed in corresponding diagonal blocks. Now we will focus
on how to compute u+v+, and u−v− are basically the same. Futhermore, notice that in each case,
there are two part. The first is the integration of product of the differential of u and another funcion v ,
which we call it jump term:

± 1

2
< ∂n(φk−

j)−, (φk+
i)+ >e ±1

2
< ∂n(φk+

i)+, (φk−
j)− >e (5.8)

The another is the integration of product of these two functions, which we call it penalty term.

γ

|en |
< (φk−

j)−, (φk+
i)+ >e (5.9)

Although they look similarly, we have to notice they are in different degree: the degree of the
functions integrated in the penalty term is higher than the ones in jump term. Since we do the
integration by Gaussian quadrature, the degree of the function which is integrated will influence the
complexity. Hence we will discuss them separately.

Let’s do the jump term first, which has a lower degree and hence simpler as well. The way of mapping
is the same as before. Also note that

∫
∂nud s = ∫ ∇u ·n. So we have

1

2

∫
ei

∇u+nv+d s = 1

2

area of element

area of master cell

∫
êi

1

|J(x̂,ŷ)|
(

ya − yc xc −xb

yc − ya xb −xc

)
∇û ·nv̂d ŝ (5.10)

In our example, ∇û is always a constant since our basic functions are all linear, and the value of
those term in transform matrix is already known. So the equation is transformed into a line integration
of v̂ on the master edge, which is equal to the value of v̂ at the quadrature point on one of the edges of
the master cell. Notice which edge should we calculate is depended on the map you choose.

Here we take edge (0,8) as an example. Then the u+v+ are only nonzero in the element E0, since the
+ side of the edge in in element E0. The value of it will be place on the 1-th diagonal blocks. We choose
the map from E0 to the master cell, where [8,4,0] of E0 is mapped to [A,C ,B] of the master cell. As a
result, the edge (0,8) is map to the edge (B , A). So we only need to do the integration of v̂ on the edge
(B , A). Since in this case, v̂ is always linear function, for the basic functions we choose are all linear,
we can do the integration with Gaussian quadrature using only one point, that is, the mid point of the
edge. The value of it should be calculated in advance and stored in template.

Then we move to the penalty term, which in our example is an integration of a degree 2 function.
That means, when use Gaussian quadrature, we need at least 2 quadrature points,−p(3)/6+0.5 andp

(3)/6+0.5 to get the exact answer. Since the function is a product of u and v , we can only store the
values of u and v at these quadrature points and then multiply them together. Then there will be a
probelm that how should we match these 2 pairs of values. Since we are discussing the u+v+ case and
the two function are from the same element, they share the same map from the element to master
element. As a result, we just match them naturely. That is, the value of u at −p(3)/6+0.5 match the
value of v at −p(3)/6+0.5, and the value of u at

p
(3)/6+0.5 match the value of v at

p
(3)/6+0.5

Now let’s look at u+v− and u−v+ case. Also, we can divide each of these two case to jump term and
penalty term. The jump term is just the same with u+v+ and u−v− case, except for the location of
the blocks in the global matrix. When we calculate u+v+ and u−v− case, we will always put those
value in digonal blocks. However, for u+v− and u−v+, those value will be put in some other blocks.
For example, if the edge is the interedge shared by elements km and kn , then the results of u+v− and
u−v+ should be put in (m,n) and (n,m) blocks.

35

Figure 5.4: result of ++ term

36

The major difference is the penalty term. Since in u+v− and u−v+ case, the two functions are from
two different elements, so they may use different map. Then there will be a problem of matching the
quadrature point. We need to follow steps:

step 1 Get the index of the nodes of the two corresponding elements.

step 2 Figure out the map the two elements use. Usually we set the nodes of each elements are
mapped to [A,B ,C] of the master node.

step 3 Get the value of the integration on the corresponding edge from the template, and match them
according to the map.

For example, suppose the index of the nodes of the two corresponding elements are [a,b,c] and
[b,c,d]. The interedge is [b,c]. In the first element, it is map to the edge [B ,C], so we will need the
value of the value of the basic functions on edge [B ,C], at these two quadrature points. In the second
element, it is map to the edge [A,B], so we will need the value of the value of the basic functions on
edge [A,B], at these two quadrature points. Then we can match those points. The match rule is: for
the first triangle, node 1 is b and node 2 is c; for the second triangle, node 1 is b and node 2 is c (to
determine which is the order 1 and which is the order 2, we need to follow the sequence those nodes
appears in triangles). Then we match the first value in first element with the first value in second
element, and the second value in first element with the second value in second element.

Figure 5.5: result of ++ penalty term

After finish all the calculation of each part of the stiffness matrix, we can combine them and get the
global matrix.

37

Figure 5.6: the global stiffness matrix

38

STEP 4. CONSTRUCT THE R.H.S. VECTOR We have the right hand side vector equal to

F (v) ≡ (f , v)+ ∑
eh∈E D

h

(γ

|eh |
< gD , v >eh −< gD ,∂n v >eh

)
+ ∑

eh∈E N
h

< gN , v >eh (5.11)

which is a 24×1 vector in our example. All the part of the R.H.S term can be calculated using the
method introduced before. The result of the transpose of the R.H.S vector is

RHS.png

Figure 5.7: the transpose of the R.H.S vector

39

6 3D EXAMPLE OF DG-FEM

Overview:In this section , we will show a simple example of DG-FEM to solve a 3D heat equation.
Since all the background knowledge is introduced before, this chapter will focus on how to calculate
everything in programming language.

Consider the following 2D-problem, involving a differential equation with boundary conditions:

{ −∇u = f = 0
u = 1 on ∂Ω

(6.1)

where theΩ is a cube, whose eight vertex are (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)
Just as what we do in the 2D case, There are several steps we need to do.

STEP 1. PARTITION THE DOMAIN Here, we divide the mesh into six tetrahedrons, where the mesh after
division is given as the figure 5.1 shows. For convinence, we number the points, edges and elements.
Also, we define the plus and minus side of each esge as well.

Figure 6.1: The 3D mesh we use

In order to record this mesh into computer, we need to store these kinds of information (which are
often given in mesh files, which is produced in mesh generator, like gmsh):

• the coordinates of each node

• the nodes of each element

• the nodes of each face

• the type of each face (boundary face and interior face)

• the side of each interior face (one side is + and the another is -)

In fact, given the first three items we can get the remaining 2 items. The algorithm is like following:
First, we have a list of all the elements and a list of all the faces, recording with which nodes they are
formed. Notice that each face is a triangle, so they all consist of three node. We start from the the three
nodes of the first face in the list, search for whehter there is some element contains those three nodes.
Obviously there must be at least one, at most two elements satisfies this condition. The we set the side
in the fisrt element is +. If we can successfully find the second element, then the side in it is -, and
then the face is a interior face.

To make things easier, here we set our mesh as following:

40

node and its coordinates
node index x y z

0 0 0 0
1 1 0 0
2 1 1 0
3 0 1 0
4 1 0 1
5 1 1 1
6 0 1 1
7 0 0 1

cell and its node
cell index ndoe1 node2 node3 node4

0 1 2 0 4
1 7 5 4 0
2 5 0 2 4
3 7 0 3 5
4 2 3 0 5
5 6 5 7 3

interior face and its node
face index + element index -element index node 1 node 2 node 3

0 0 2 0 4 2
1 1 2 0 5 4
2 1 3 0 7 5
3 4 2 2 5 0
4 5 3 3 5 7
5 4 3 0 5 3

boundary face and its node
face index element index node 1 node 2 node 3

0 0 0 2 1
1 4 0 3 2
2 0 1 2 4
3 2 2 5 4
4 4 2 3 5
5 5 3 6 5
6 0 0 1 4
7 1 0 4 7
8 3 0 7 3
9 5 3 7 6

10 1 5 7 4
11 5 5 6 7

Notice here we number the node of each cell according to the order of map. The first node is
mapped to point O in the master tetrahedron. The second node is mapped to point A. The third node
is mapped to point B. The last node is mapped to point C. So the map is ensured at this step.

41

Figure 6.2: The master tetrahedron

STEP 2. CHOOSE THE BASIS FUNCTIONS AND STORE THE TEMPLATE We want each u
(k j)
h to be approxi-

mated by a linear combination of a set of basis functions within each element k j . These chosen basis
functions also take the role as the test function v . We may make our choice of the basis functions to
be linear, quadratic or polynomials in higher degree to improve the performance.

Legendre polynomials and lagrange polynomials are some of the popular choices. In this example,
the set of linear lagrange polynomials φ̂0 = x, φ̂1 = y , φ̂2 = z, φ̂3 = 1− x − y − z over the master
element is chosen for use. It would need to be mapped into the corresponding set of functions

φ
(E j)
0 ,φ

(E j)
1 ,φ

(E j)
2 ,φ

(E j)
2 over the local element I j for each j afterwards to serve our purpose.

After that we need to store our template. The template should include the following values:

• the values of dφ̂0, dφ̂1, dφ̂2. dφ̂3 at the quadrature points of tetrahedrons in the mester cell

• the values of dφ̂0, dφ̂1, dφ̂2. dφ̂3 at the quadrature points of triangles in four faces of the mester
cell

• the values of φ̂0, φ̂1, φ̂2. φ̂3 at the quadrature points of triangles in four faces of the mester cell

We will use these value later.

STEP 3. CONSTRUCT THE MATRIX we will calclate the 3 parts, element term, jump term and boundry
term one by one. We know that each entry Si j of our stiffness matrix S is defined by the bilinear sym-
metric function a(φ j ,φi). In our choice ofφ, each of the six intervals has 4 degree of freedom. Thus S is

a 24×24 matrix, with each parameter of a runs across allφ(E0)
0 ,φ(E0)

1 ,φ(E0)
2 ,φ(E0)

3 ,φ(E1)
0 , ... ,φ(E8)

0 ,φ(E8)
1 ,φ(E8)

2 ,φ(E8)
3 .

a(φ(E0)
0 ,φ(E0)

0) a(φ(E0)
1 ,φ(E0)

0) a(φ(E0)
2 ,φ(E0)

0) a(φ(E0)
3 ,φ(E0)

0) a(φ(E1)
0 ,φ(E0)

0) a(φ(E1)
1 ,φ(E0)

0) a(φ(E1)
2 ,φ(E0)

0) · · ·
a(φ(E0)

0 ,φ(E0)
1) a(φ(E0)

1 ,φ(E0)
1) a(φ(E0)

2 ,φ(E0)
1) a(φ(E0)

3 ,φ(E0)
1) a(φ(E1)

0 ,φ(E0)
1) a(φ(E1)

1 ,φ(E0)
1) a(φ(E1)

2 ,φ(E0)
1)

a(φ(E0)
0 ,φ(E0)

2) a(φ(E0)
1 ,φ(E0)

2) a(φ(E0)
2 ,φ(E0)

2) a(φ(E0)
3 ,φ(E0)

2) a(φ(E1)
0 ,φ(E0)

2) a(φ(E1)
1 ,φ(E0)

2) a(φ(E1)
2 ,φ(E0)

2)

a(φ(E0)
0 ,φ(E0)

3) a(φ(E0)
1 ,φ(E0)

3) a(φ(E0)
2 ,φ(E0)

3) a(φ(E0)
3 ,φ(E0)

3) a(φ(E1)
0 ,φ(E0)

3) a(φ(E1)
1 ,φ(E0)

3) a(φ(E1)
2 ,φ(E0)

3)

a(φ(E0)
0 ,φ(E1)

0) a(φ(E0)
1 ,φ(E1)

0) a(φ(E0)
2 ,φ(E1)

0) a(φ(E0)
3 ,φ(E1)

0)
. . .

a(φ(E0)
0 ,φ(E1

1) a(φ(E0)
1 ,φ(E1)

1) a(φ(E0)
2 ,φ(E1)

1) a(φ(E0)
3 ,φ(E1)

1)

a(φ(E0)
0 ,φ(E1

2) a(φ(E0)
1 ,φ(E1)

2) a(φ(E0)
2 ,φ(E1)

2) a(φ(E0)
3 ,φ(E1)

2)

a(φ(E0)
0 ,φ(E1

3) a(φ(E0)
1 ,φ(E1)

3) a(φ(E0)
2 ,φ(E1)

3) a(φ(E0)
3 ,φ(E1)

3)
...

42

Note that this global matrix is composed by blocks of 4×4 local matrices, and each block stores
information of basis functions interaction within or across elements.

Then we start to compute each part of the equation.

STEP 3.1. COMPUTE
∫

k j
∇u∇v . This term is almost the same as what we have done in 2D case. From

Section 3 we know that this term is computed with respect to elementss, so only diagonal blocks are
involved. Recall that∫

k
∇u∇vd s =

∫ ∫
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z
)

˙
(
∂v

∂x
,
∂v

∂y
,
∂u

∂z
)d xd yd z

=
∫ ∫

(
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
+ ∂u

∂z

∂v

∂z
)d xd yd z

=
∫ ∫ [(∂u

∂x̂

∂x̂

∂x
+ ∂u

∂ŷ

∂ŷ

∂x
+ ∂u

∂ẑ

∂ẑ

∂x

)(∂v

∂x̂

∂x̂

∂x
+ ∂v

∂ŷ

∂ŷ

∂x
+ ∂v

∂ẑ

∂ẑ

∂x

)+
(∂u

∂x̂

∂x̂

∂y
+ ∂u

∂ŷ

∂ŷ

∂y
+ ∂u

∂ẑ

∂ẑ

∂y

)(∂v

∂x̂

∂x̂

∂y
+ ∂v

∂ŷ

∂ŷ

∂y
+ ∂v

∂ẑ

∂ẑ

∂y

)+
(∂u

∂x̂

∂x̂

∂z
+ ∂u

∂ŷ

∂ẑ

∂z
+ ∂u

∂ẑ

∂ẑ

∂z

)(∂v

∂x̂

∂x̂

∂z
+ ∂v

∂ẑ

∂ẑ

∂z
+ ∂v

∂ẑ

∂ẑ

∂z

)]|J(x̂,ŷ ,ẑ)|d x̂d ŷd ẑ

=
∫ ∫

F (x̂, ŷ , ẑ)d x̂d ŷd ẑ

(Gaussian quadrature) =∑
wi F (x̂i , ŷi , ẑi)

Hence the term ∫
k j

∇φ(k j)
ku

∇φ(k j)
kv

can be calculated by mapping. Now we use ki element as an example. Then the element term of ki

will produce a 4×4 matrix. Note that we have the map from element to ki : x
y
z

=
 xa −xd xb −xd xc −xd

ya − yd yb − yd yc − yd

za − zd zb − zd zc − zd

∗
 x̂

ŷ
ẑ

+
 xd

yd

zd

 (6.2)

Then we can get the inverse of xa −xd xb −xd xc −xd

ya − yd yb − yd yc − yd

za − zd zb − zd zc − zd

 (6.3)

which equals to
∂x̂
∂x

∂x̂
∂y

∂x̂
∂z

∂ŷ
∂x

∂ŷ
∂y

∂ŷ
∂z

∂ẑ
∂x

∂ẑ
∂y

∂ẑ
∂z

 (6.4)

So we can directly calculate the equation using the quadrature point t1 = (1
3 , 1

3 , 1
3) and the weight of

it is 1.
The other part is the same with 2D case. All the values we need are stored in template.
Then we can get the local blocks. After putting those blocks into the corresponding diagonal blocks,

we can get the global matrix. Notice that since in our mesh, each cell is equlibrium to another, so
the value of numbers in element term in each block should be the same (the location of numbers in
blocks may be different, depending on the way of mapping).

43

Figure 6.3: result of element term

44

STEP 3.2. COMPUTE
∫

Ei
∂nuv +∂n vud s. This term is computed with respect to faces which stand

between adjacent element, so for each Face Fi , the two corresponding adjancent element km ,kn is
included in the calculation. As a result, the m-th, n-th diagonal block and the related sub-diagonal
blocks are involved.

First, let’s see the u+v+ and u−v− case. Since here the two functions involved are of the same side,
so the result of the calculation will be placed in corresponding diagonal blocks. Also, we will focus on
u+v+ only.

Let’s do jump term first, which has a lower degree and hence simpler as well. The way of mapping is
the same as before. Also note that

∫
∂nud s = ∫ ∇u ·n. So we have

1

2

∫
Ei

∇u+nv+d s = 1

2

volume of element

volume of master cell

∫
Ei

∇û

 xa −xd xb −xd xc −xd

ya − yd yb − yd yc − yd

za − zd zb − zd zc − zd

′

·nv̂d ŝ (6.5)

In our example, ∇û is always a constant, and the value of the jacobian is already known. So the
equation is transformed into a integration of v̂ on the master edge. Notice which edge should we
calculate is depended on the map you choose. The value of it should be calculated in advance and
stored in template. So this term is finished.

Then we move to the penalty term, which in our example is an integration of a degree 2 function.
That means, when use Gaussian quadrature, we need at least 3 quadrature points,(1/6,1/6), (1/6,2/3)
and (2/3,1/6) to get the exact answer. Then since the function is a product of u and v , we can store the
values of u and v at these quadrature points and then multiply them together. Since we are discussing
the u+v+ case and the two function are from the same element, they share the same map from the
element to master element. So the value of u at (1/6,1/6) match the value of v at (1/6,1/6), the value
of u at (1/6,2/3) match the value of v at (1/6,2/3), and the value of u at (2/3,1/6) match the value of v
at (2/3,1/6).

Now let’s look at u+v− and u−v+ case. Also, we can divide each of these two case to jump term and
penalty term. The jump term is just the same with u+v+ and u−v− case, except for the location of
the blocks in the global matrix. When we calculate u+v+ and u−v− case, we will always put those
value in digonal blocks. However, for u+v− and u−v+, those value will be put in some other blocks.
For example, if the edge is the interedge shared by elements km and kn , then the results of u+v− and
u−v+ should be put in (m,n) and (n,m) blocks.

The major difference is the penalty term. Since in u+v− and u−v+ case, the two functions are from
two different elements, so they may use different map. Then there will be a problem of matching the
quadrature point. In 3D case, these are totally 6 ways of matching. We need to follow the same step as
2D case.

For example, suppose the index of the nodes of the two corresponding elements are [1,4,7,9] and
[7,3,9,4]. The interedge is [4,7,9]. In the first element, it is map to the face [B ,C ,D], so we will need
the value of the value of the basic functions on face [B ,C ,D], at these three quadrature points. In
the second element, it is map to the face [A,C ,D], so we will need the value of the value of the basic
functions on edge [A,C ,D], at these three quadrature points. Then we can match those points. The
match rule is: for the first triangle, node 1 is 4, node 2 is 7, node 3 is 9; for the second triangle, node 1
is 7, node 2 is 9, node 3 is 4 (to determine which is the node 1 and which is the node 2, we need to
follow the sequence those nodes appears in elements). Then we match the value of node 1 in first
element with the value of node 1 in second element, the value of node 2 in first element with the
value of node 2 in second element, and the value of node 3 in first element with the value of node 3 in
second element.

45

Figure 6.4: result of ++ term

46

Figure 6.5: result of ++ penalty term

After finish all the calculation of each part of the stiffness matrix, we can combine them and get the
global matrix.

47

Figure 6.6: the global stiffness matrix

48

7 FUTURE WORK

After finish calculation of stiffness matrix on 3D DG-FEM, we may continue to work on the followings:

1. PARALLZATION OF 3D DG-FEM At this point all of our procedure are finished in serial code.
Implement all the work into parallzation will definitely improve the performance of the programme.
We need to consider using parallzation to construct the stiffness matrix with deviding it into several
blocks. Also, we will use parallel method to solve the final equation, using trillino.

2. MORE APPLICATIONS. The Poisson’s equation is an example that is relatively easy to work on,
since it involves only a derivative term. When come to chemical transport phenomena, most often
more derivative terms and physical quantities such as time, mass, momentum or energy are involved.
Therefore expanding the code to cover different chemical transport equations may be considered.

49

8 APPENDIX

Figure 8.1: result of element term of 2D case

50

Figure 8.2: result of ++ jump term of 2D case

51

Figure 8.3: result of ++ penalty term of 2D case when r=6

52

Figure 8.4: result of – jump term of 2D case

53

Figure 8.5: result of – penalty term of 2D case when r=6

54

Figure 8.6: result of +- jump term of 2D case

55

Figure 8.7: result of – penalty term of 2D case when r=6

56

Figure 8.8: result of +- jump term of 2D case

57

Figure 8.9: result of -+ penalty term of 2D case when r=6

58

Figure 8.10: result of boundary jump term of 2D case

59

Figure 8.11: result of boundary penalty term of 2D case when r=6

60

Figure 8.12: result of eleterm term of 3D case

61

Figure 8.13: result of ++ jump term of 3D case

62

Figure 8.14: result of ++ penalty term of 3D case when r=1

63

Figure 8.15: result of – jump term of 3D case

64

Figure 8.16: result of – penalty term of 3D case when r=1

65

Figure 8.17: result of +- jump term of 3D case

66

Figure 8.18: result of +- penalty term of 3D case when r=1

67

Figure 8.19: result of -+ jump term of 3D case

68

Figure 8.20: result of -+ penalty term of 3D case when r=1

69

Figure 8.21: result of boundary jump term of 3D case

70

Figure 8.22: result of boundary penalty term of 3D case when r=1

71

REFERENCE

[1] Sven Berger: Introduction to discontinuous Galerkin element methods, 1, Institute of Aerody-
namics, 2003.

[2] Rashid Mehmood, Jon Crowcroft: Parallel iterative solution method for large sparse linear
equation systems, 2.1, University of Cambridge, UCAM-CL-TR-650 ISSN 1476-2986, 2005.

[3] Rashid Mehmood, Jon Crowcroft: Parallel iterative solution method for large sparse linear
equation systems, 4, University of Cambridge, UCAM-CL-TR-650 ISSN 1476-2986, 2005.

[4] Rashid Mehmood, Jon Crowcroft: Parallel iterative solution method for large sparse linear
equation systems, 2.4, University of Cambridge, UCAM-CL-TR-650 ISSN 1476-2986, 2005.

[5] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra,
Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst: Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 3.1.1, the Society of Industrial and Applied
Mathematics, 2nd edition.

[6] Marzio Sala, Michael A. Heroux, David M. Day, James M. Willenbring: Trilinos Tutorial, 11.4,
Sandia Report SAND2004-2189, 2010.

78

ACKNOWLEDGEMENT

This project was sponsored by Oak Ridge National Laboratory, Joint Institute for Computational
Sciences, University of Tennessee, Knoxville and The Chinese University of Hong Kong. It is my great
honor to be financially supported by the aforementioned institutions to work on this project in the
past ten weeks.

A sincere thank to my mentors, Dr. Ohannes Karakashian, Dr. Kwai Wong and Michael Wisw, for
their continuous support and guidance throughout the project. Dr. Karakashian has been not only
more than generous in offering intellectual lectures that are interesting and useful. Dr. Wong has been
very considerate and full of wisdom in providing prospective insights to problem solving both at work
and in daily life. Micheal Wise has helped a lot in some very detail part of the project and make things
much easier.

Lastly, thanks for CSURE partcipants, who has worked with me during the two months and been so
cheerful and helpful. The memory of this summer will be unforgetable.

79

