
Parallel Computing for GIS Problem

ZHANG ZHEN

Supervisor: Kwai Wong, Cheng Liu,
Lonnie Crosby, Nicholas Nagle

August 21, 2016

Abstract

In this project, we perform dasymetric mapping in parallel. Dasy-
metric mapping, as a commonly used mapping method in geography and
demography, can be very time-consuming and can occupy a lot of space
if performed on large areas. If we can develop some easy parallel method
for dasymetric mapping, then time and space can both be saved. We are
using MPI to fulfill this task. At the first stage, we try to use a simple
model of dasymetric mapping–Regression Weighting Method on a state
level. This requires 3 input data sets: NLCD data set, boundary data of
block groups in a state, and ACS summary table. The output will be a
matrix containing population in 30m*30m grids. The result turns out to
be good. In our next step we are going to repeat the same process on
a larger scale. Also we will implement the Penalized Maximum Entropy
Dasymetric mapping(P-MEDM) method in parallel.

1

1 Introduction

1.1 Dasymetric Mapping

Most of the time, population data that are publicly available don’t have a sat-
isfactory resolution. In reality, we can only know how many people are there in
a block group(6.1.1). But we don’t know where people live within that block
group. Actually, in GIS applications and other areas, sometimes we have to
know the population distribution in a high resolution. Dasymetric mapping can
help us with that. Dasymetric mapping will use an ancillary-level data(most
of the time land type data), which is at a higher resolution level, to help us
determine the population distribution more accurately.
In this project, we will cover two main methods for dasymetric mapping. The
first one is weighting regression method, which is easier to implement. The
second one is Penalized Maximum Entropy Dasymetric Mapping, which is more
complicated but more accurate.

Figure 1: Dasymetric Mapping

1.2 Parallel Method

We would like to perform dasymetric mapping in parallel based on two main
concerns. First, it will take a long time to do dasymetric mapping on the whole
U.S. Later, if we want to perform dasymetric mapping on the whole world,
time cost will be terrible. Second, space is also an issue. All the data (50GB
for the whole states using my method, maybe need more space if using more
complicated algorithms) can hardly be fit into a single memory. Thus we have

2

to distribute data and work among different processes. We use MPI to fulfill
this task.

2 Regression Weighting method

2.1 Steps

4 steps are needed in regression weighting method: data preparation, regression
estimation, calculation, parallelize, as is shown in figure 2.

Figure 2: Steps needed for Regression Weighting Method

2.2 Data Preparation

In general, 3 data sets are needed for Regression Weighting method. The first
one is National Land Cover data(NLCD), the second one is block group bound-
ary file, the third one is American Community Survey(ACS) Summary table.
Because the three datasets are on different enumeration unit and are in different
format, we need to make some changes on them, to make them compatible with
each other.

2.2.1 National Land Cover Data

National Land Cover Database 2011 (NLCD 2011) is the most recent national
land cover product created by the Multi-Resolution Land Characteristics (MRLC)
Consortium. NLCD 2011 provides the capability to assess national land cover
changes and trends across the United States from 2001 to 2011. NLCD 2011
uses 16-class land cover classification scheme that has been applied consistently
across the United States at a spatial resolution of 30 meters.
The file has a size of about 16GB, and it is a 104424×161190 matrix. Each cell
contains a number represents the land type.
The data set can be downloaded from http://www.mrlc.gov/nlcd2011.php

After downloading the package, we can see that two files are larger, one is in
.rrd, another is in .ige. These contains the main information of land type. But
we will not use them directly. We will manipulate on .img file instead, because

3

there is a pointer in .img file that points to these two files. We can open the
.img file using QGIS. (.img means the file is raster file, which is a matrix.) A
map of US will appear like figure 3:

Figure 3: NLCD data under QGIS

However, we only need the land information of Tennessee at this stage. So we
will cut Tennessee out from this data set. This requires a few steps:
1. Download the state-boundary file for the whole US from https://www.

census.gov/geo/maps-data/data/cbf/cbf_state.html

2. Load state-boundary file and NLCD data into QGIS.
3. Highlight Tennessee in state-boundary file and save it as a separate image in
QGIS.
4. Use the boundary of Tennessee(from 3) to clip NLCD data. This step is still
done using QGIS.
Finally we get a picture like figure 4: This picture contains the land type data

Figure 4: Land Type data of Tennessee

4

that we want. We can read them out using GDAL later.

2.2.2 Block Group Boundary File

Block group boundary file is in state level. It tells the shape of block groups
in Tennessee. In QGIS, it looks like figure 5: However, this file is not a raster

Figure 5: Block group boundary of Tennessee

file. We cannot manipulate it as a matrix. Thus, we have to rasterize it using
QGIS. Steps are shown below:
1. Download the block group boundary file of Tennessee in 2015 from https:

//www.census.gov/geo/maps-data/data/cbf/cbf_blkgrp.html.
2. Load this file into QGIS.
3. Add a new attribute called ”GROUPID” into block group boundary file. We
will use a unique number between 1 and 4125 to identify a block group(There
are 4125 block groups in Tennessee). We want to rasterize the file based on this
attribute. However, values in a raster file can only range from 0 to 255. Thus,
we add an attribute named ”QUOTIENT”, which is equal to GROUPID/256,
another attribute named ”REMAINDER”, which is equal to GROUPID%256.
Then these two attributes can uniquely identify a block group, and their values
are between 0 and 255. We will rasterize the shape file into 2 matrices according
to QUOTIENT and REMAINDER separately. This can be done using QGIS
easily.

2.2.3 American Community Survey Summary Table

American Community Survey(ACS) Summary Table, is a .csv file. It tells the
total population, population by race, population by sex etc. in each block group.
Because we only need some columns of this data set, we will use R to select some
columns of it and reorder them according to the GROUPID we defined in section
2.2. Because we will do dasymetric mapping in C rather than in R, we still have
to load our R matrix into C. This is a little bit complicated. We use a C program
that calls R function to fulfill this task. It is implemented in serial.c/parallel.c
as a function named read bg() as well as an R function named ACS.r.
Details of what ACS.r does is omitted here. You can read it for more reference.

5

2.3 Regression Estimation

Now we have the land type data for Tennessee, however, it cannot be used
directly to determine population distribution. However, it can be used to give a
brief estimate of population density in each 30m*30m cell. We can use a linear
regression model to model the relation between land type and density:

Ps = α+

C∑
c=1

βcAsc + εs

where Ps is the population of zone s; α is the intercept term; βc is the coefficient
for land cover c; Asc is the area of land cover c within zone s; C is the number
of populated land cover types occurring within study region; and εs is a random
error term. It can also be written as:

E(Ps|As) = α+ βAs

where β and AS are vectors. Negative population totals can also be avoided by
using Poisson regression:

E(Ps|As) = exp(α+ βAs)

Here s(source zone) is a block group. The values in β are the estimated popu-
lation density for cells with different land types.

2.4 Calculation

We will use the formula below to get our final result:

P̂ opt = Pops
wt∑
t∈s wt

Here s, the source region is block group. t, the target region is 30m*30m cell.
That means, the population in a cell is equal to the population in a block group
times the weight of that cell divided by the total weights of that block group.
Because we have determined the estimated population density for cells with
different land types, we can use them as the weights wt here.
By this formula, we get our final result, we should have interpreted it as the
population in each 30m*30m cell. However, because this number is always less
than 1, we prefer to interpret it as the possibility for a cell to reside people. The
result looks like figure 6 (Darker color mean higher possibility to reside people).

2.5 Parallelize

This project is quite open because actually there are many parts that can be
parallelized. I have done the parallelization on 2 aspects. First, because we
would like to do dasymetric mapping on different groups of people, we can use
different processes to analyze on different groups of people, as is shown in figure
7 and figure 8. What’s more, figure 8 shows the the result of parallel dasymetric

6

Figure 6: Population Density Map under Dasymetric Mapping

Figure 7: Work distribution(1)

mapping. Each picture shows the population distribution of a certain group
of people(Total, White, Asian, Black). After we have distributed work into
small groups, we can further distribute within these small groups. We can
cut the input data by rows and assign them separately to different processes.
Then every process can do their own calculation with little communication,
as is shown in figure 9. The original time cost to run Regression Weighting
Method on Tennessee analyzing 4 groups of people will be about half a minute,
after parallelization, time cost is reduced to only 2 seconds. Although this seems
unnecessary, if we apply the method on the whole U.S., analyzing more features,
more importantly, if we apply P-MEDM method in the next section, this step
will become very useful.

7

Figure 8: Work distribution(2)

Figure 9: Work distribution(3)

3 Penalized Maximum Entropy Dasymetric Mapping(P-
MEDM)

3.1 Introduction

P-MEDM Method is proposed by Dr. Nagle. The main motivation for propos-
ing this method is that the role of uncertainty in dasymetric modeling has not
been fully addressed as of yet. Uncertainty is usually present because most pop-
ulation data are themselves uncertain, or the geographic processes that connect
population and the ancillary data layers are not precisely known. The P–MEDM
propagates uncertainty through the model and yields fine-resolution population
estimates with associated measures of uncertainty. For detailed explanation,
read Nagle’s paper in http://dx.doi.org/10.1080/00045608.2013.843439. Also,
programs have been written by Nagle and April to explain this method.
There is one major difference between this program and what we are going to
do. We want to map population in a block group into 30m*30m grids while
Nagle wants to map population in a PUMA(A2) into block groups. However,
we can still learn a lot from the program.

8

3.2 Steps

The steps are the same as Regression Weighting Method, as shown in figure 2.
However, the last step: calculation is different between these two methods. For
Regression Weighting Method, we use this easy formula:

P̂ opt = Pops
wt∑
t∈s wt

Here s is the source region(block group), t is the target region(30m*30m grid).
wt is the weights we have assigned to each target region by regression model.
While for P-MEDM, we will use this formula to determine population in each
grid:

max−
∑
it

n

N

wit
dit

log(
wit
dit

)−
∑
k

e2k
2σ2

k

subject to the relaxed pycnophylactic constraints∑
it∈k

wit = P̂ opk + ek

for each constraint k. Wit is the number of individuals like sample record i in
target region t. P̂ opk will be the total population Where n is the size of the
microdata sample, N is the population size, σ2

k is the variance of the uncertainty

ek, and dit is a prior estimate of the population wit. The term
∑
k
e2k
2σ2

k
is a

penalty factor; it penalizes solutions with large errors. This is an optimization
problem with 2 unknowns and one constraint. We can solve this problem using
trust region method(A3).

3.3 Implementation Details

Implementation has not yet been done. But I can still give some advice on that.
The first few parts should be the same as the program for Regression Weighting
Method. The only thing we need to do is to change the calculation formula to
our new P-MEDM formula and use trust region to solve the problem. (Here
we will use the regression coefficient as dit.) However, it will take extremely
long time to run trust region directly compared to using Regression Weighting
Method. Thus, we have to do some transformation on the input data (from
dense matrix to sparse matrix, for example). Also, preconditioning is needed
for the optimization problem. We can trace Nagle’s code for more reference.
Again, we cannot copy Nagle’s code directly. Firstly, because we want to map
population in a block group into 30m*30m grids while Nagle wants to map
population in a PUMA(A2) into block groups. Secondly, because his code is
written is R and C++, which will be hard to parallelize. We have to translate
them into C. After we successfully implement P-MEDM Method in serial, we
will try to parallelize it. This is worth doing because it will take a long time to
run P-MEDM if we want to map population into 30m*30m grids.

9

4 Future Work

4.1 Regression Coefficients

As I have mentioned before, I use non-negative regression method to estimate
the population density of each 30m*30m grid. However, the coefficients I got is
not satisfactory. There are 3 possible ways to solve this problem suggested by
Dr. Nagle:
1. Clever subsetting of data
2. Use constrained regression to force the regression coefficients to be positive
3. Aggregation of negative land use classes with other non-negative classes
There isn’t a well-established literature here. The most widely used method
is clever subsetting to respond that are mostly of one land use class. And we
prefer to choose Poisson regression as our regression model:

E(PS |AS) = exp(α+ βAS)

. Because the regression program is written in R, we only need to modify on
nnls.r.

4.2 Increasing Scale

We want to do the same process for the whole United States. The main method
will be no different. However, we have to modify the data preparation part.
The main problem is, for the block group boundary file, they are all in state
level. There is no block group boundary file for the whole United States. So
if we want to rasterize them separately using QGIS by ourselves, it will take a
long time. One possible way to solve this problem is that we can use GDAL
to do rasterization instead of QGIS. And we can run the program in parallel
to save time. Then, we can combine these matrices together, or we can remain
them in each parallel processes without combining them. We can choose the
better method from these two. If we want to do dasymetric mapping for the
whole world, there will be more difficulties.

4.3 Cutting Data

There are many ways for cutting data. We don’t necessarily have to cut the data
by rows. For example, we can cut the data by columns or by boxes. Though for
me, cutting by rows will be a better choice because GDAL read data by rows.
Another thing that can be improved is we can choose how much to read by each
process. Now we assign equal amount of data to every process. However, for
processes which are responsible for processing data on the boundary–They don’t
need to do much calculation compared to processes which are responsible for
processing data in the center. Thus we can assign more data for the first kind
of processes so that they will not wait for the second kind of processes. This
will save some time. We have to determine how much data should be assigned
to each process.

4.4 P-MEDM

First of all, we have to have a deeper understanding of Prof. Nagle’s code. A
lot of the contents in the code are not revealed in the paper. We can ask him for

10

more reference. Socond, Nagle’s code for P-MEDM method only contains half
of the story: it only uses ACS Summary Table and PUMS data to predict the
number of population in a block group. However, it doesn’t use the ancillary
level data(NLCD) to perform dasymetric mapping. We need to implement the
code for performing dasymetric mapping by ourselves(Nagle seems to miss the
codes for that part). Third, we can try our best to find a possible way to
parallelize P-MEDM Method. But that will be a lot more difficult because the
original codes are written in R and C++. Possibly we have to change the codes
into C codes first.

5 Conclusion

Dasymetric mapping, as a commonly used method in geographic and demo-
graphic study, is our researching target in this project. There are two main
methods to do dasymetric mapping: Regression Weighting Method and P-
MEDM Method. In this project, I have implemented Regression Weighting
Method in serial as well as in parallel. This seems unnecessary because the
serial code is fast enough already. However, this gives us an idea on how to
parallelize P-MEDM Method, which is more useful in practice. The follow-
ing work will be fixing some small problems in Regression Weighting Method,
implementing P-MEDM method in C and parallelizing it.

Acknowledgement

Support from City University of Hong Kong, Oak Ridge National Laboratory,
Joint Institute for Computational Sciences and University of Tennessee are
gratefully acknowledged. Our mentors Dr. Cheng Liu, Dr. Kwai Wong, Dr
Lonnie Crosby and Dr. Nicholas Nagle, as well as other students in this CSURE
program, are of great help.

11

References

[1] Nicholas N. Nagle, Barbara P. Buttenfield, Stefan Leyk, Seth
Spielman(2014) Dasymetric Modeling and Uncertainty, Annals of
the Association of American Geographers, 104:1, 80-95, DOI:
10.1080/00045608.2013.843439.

[2] Andrey Petrov (2012) One hundred years of dasymetric mapping:
Back to the origin, The Cartographic Journal, 49:3, 256-264, DOI:
10.1179/1743277412Y.0000000001

[3] Jeremy Mennis (2003) Generating surface models of population using dasy-
metric mapping, The Professional Geographer, 55:1, 31-42

[4] Mitchel Langford (2006) Obtaining population estimates in non-census re-
porting zones: An evaluation of the 3-class dasymetric method, Computers,
Environment and Urban Systems 30, 161-180

[5] Cory L. Eicher and Cynthia A. Brewer (2011) Dasymetric mapping and
areal interpolation: Implementation and evaluation, Cartography and Ge-
ographic Information Science, Vol.28, No.2, pp.125-138

[6] Rachel Sleeter Dasymetric mapping techniques for the San Francisco Bay
Region, California

12

Appendices

A Terms explanation

A.1 Block Group

A Census Block Group is a geographical unit used by the United States Census
Bureau which is between the Census Tract and the Census Block. It is the
smallest geographical unit for which the bureau publishes sample data, i.e. data
which is only collected from a fraction of all households.

A.2 PUMA

PUMA is a larger census unit than block group. They are the only sub-state
geographic identifiers on the PUMS records. But now that these areas are being
used to publish summary tables based on the American Community Survey
data, they should become a lot more widely used. Because they are required
to have a minimum population of 100,000 all PUMA areas exceed the 65,000
population threshold, thus insuring that there will be single-year ACS data for
them published each year.

A.3 Trust Region Method

Trust region method is a commonly used method in optimization problems.
Suppose the target function is f . For trust region method, the information
gathered about f is used to construct a model function mk whose behavior
near the current point xk is similar to that of the actual objective function f .
Because the model mk may not be a good approximation of f when x is far
from xk, we restrict the search for a minimizer of mk to some region around
xk. In other words, we find the candidate step p by approximately solving the
following subproblem:
min mk(xk+p), where xk+p lies insidethe trust region. If the candidate solution
does not produce a sufficient decrease in f , we conclude that the trust region
is too large, and we shrink it and re-solve the subproblem above. Usually, the
trust region is a ball defined by ‖(p) ≤ δ, where the scalar δ ¿ 0 is called the
trust-region radius. Elliptical and box-shaped trust regions may also be used.
The model mk is usually defined to be a quadratic function of the form

mk(xk + p) = fk + pT∇fk +
1

2
pTBkp

where fk,∇fk,and Bk are a scalar, vector,and matrix, respectively.As the nota-
tion indicates, fk and ∇fk are chosen to be the function and gradient values at
the point xk, so that mk and f are in agreement to first order at the current
iterate xk. The matrix Bk is either the Hessian ∇2fk or some approximation to
it. For more reference, read J.Wright’s Numerical Optimization.

B Tips on running the code

Some packages should be installed to run the program successfully. First of
all, you should install GDAL. If you want to do regression in C rather than in

13

Figure 10: Trust Region Method

R, you should install gsl or some other statistical packages in C. Also, another
library called REmbedded should also be installed. But that will be installed
automatically when you install R. These packages should be included in your
program, also should be linked with your program in the make file.
Another thing to notice is that you have to define your LD LIBRARY PATH
to the path to libraries above. For example, in my case, I have to type these
commands in Linux:

LD LIBRARY PATH=/usr / l o c a l / l i b :
/home/ zzhang22 / nlcd /GSL−INSTALL/ l i b :

/home/ zzhang22 /R/R−3.2.4/ l i b
export LD LIBRARY PATH

We also have to define our R HOME by ourselves like this:

R HOME=/home/ zzhang22 /R/R−shared− i n s t a l l / l i b 6 4 /R
export R HOME

C Serial Code

#include ” gdal . h”
#include ” c p l s t r i n g . h”
#include ” cp l conv . h” /∗ f o r CPLMalloc () ∗/
#include ” s t d l i b . h”
#include ”mpi . h”
#include <s t d i o . h>
#include <time . h>
#include <s t r i n g . h>
#include <math . h>
#include <Rembedded . h>
#include <Rinte rna l s . h>
#include <o g r a p i . h>

14

//These two methods are not needed now
void c r e a t e c s v (int a [] [4 1 2 5] , int m, int n) {

FILE ∗ fp ;
int i , j ;
fp=fopen (” t e s t . csv ” , ”w+”) ;
for (i =0; i<m; i++){

for (j =0; j<n−1; j++){
f p r i n t f (fp , ”%d , ” , a [i] [j]) ;

}
f p r i n t f (fp , ”%d\n” , a [i] [n−1]) ;

}
}

void r ead c sv (int bg pop [4 1 2 5] [4]) {
FILE ∗ fp = fopen (” . . / pop by race . csv ” , ” r ”) ;
i f (fp !=NULL) {

char l i n e [4 0] ;
int i =0;
while (f g e t s (l i n e , s izeof l i n e , fp) !=NULL) {

i f (l i n e [0] ! = ’ \n ’&&l i n e [0] ! = ’ \ r ’) {
char∗ pch ;
pch=s t r t o k (l i n e , ” , ”) ;
for (int j =0; j <4; j++){

bg pop [i] [j]= a t o i
(pch) ;

pch=s t r t o k (NULL, ”
, \n\ r ”) ;

}
i ++;

}
}
f c l o s e (fp) ;

}
else {

per ro r (” user . dat ”) ;
}

}

void source (const char ∗name) {
SEXP e ;

PROTECT(e=lang2 (i n s t a l l (” source ”) , mkString (name))
) ;

R tryEval (e , R GlobalEnv ,NULL) ;
UNPROTECT(1) ;

}

void read bg (int pop by race [4 1 2 5] [4]) {
int r a r g c = 2 ;
char ∗ r a rgv [] = { ”R” , ”−−s i l e n t ” } ;

15

Rf initEmbeddedR (r argc , r a rgv) ;
OGRRegisterAll () ;
OGRDataSourceH hDS ;
hDS = OGROpen(”/home/ zzhang22 / nlcd / Input /

bg boundary/ cb 2015 47 bg 500k . shp” , FALSE,
NULL) ;

i f (hDS == NULL) {
p r i n t f (”Open f a i l e d .\n”) ;
e x i t (1) ;

}
OGRLayerH hLayer ;

hLayer = OGR DS GetLayer (hDS , 0) ;
OGRFeatureH hFeature ;

OGR L ResetReading (hLayer) ;
int i =0;
int geo l en =4125;
char ∗GEOID[4 1 2 5] ;
while ((hFeature = OGR L GetNextFeature (hLayer))

!= NULL) {
OGRFeatureDefnH hFDefn = OGR L GetLayerDefn (

hLayer) ;
int i F i e l d =5;
GEOID[i]=OGR F GetFieldAsString (hFeature , i F i e l d

) ;
i ++;
}
source (”/home/ zzhang22 / nlcd /Rcodes/ACS. r ”) ;
SEXP arg ;
PROTECT(arg=a l l o c V e c t o r (STRSXP, geo l en)) ;
for (i =0; i<geo l en ; i++){

SET STRING ELT(arg , i , Rf mkChar (GEOID[i]))
;

}
SEXP ACS call ;
PROTECT(ACS call=lang2 (i n s t a l l (”ACS”) , arg)) ;
int errorOccurred ;
SEXP r e t=R tryEval (ACS call , R GlobalEnv ,&

errorOccurred) ;
double ∗pop ;
i f (! e r rorOccurred) {

pop=REAL(r e t) ;
for (int i =0; i<geo l en ; i++){

for (int j =0; j <4; j++){
pop by race [i] [j]=(int)

pop [i+j ∗ geo l en] ;
}

}
}

16

UNPROTECT(2) ;
}

int main (int argc , char ∗∗ argv)
{

//Get Array f o r the popu la t i on o f each b l o c k
group

int bg pop [4 1 2 5] [4] ={0} ;

// read b l o c k group popu la t i on by a lready−prepared
csv f i l e s

// read csv (bg pop) ;

// read b l o c k group popu la t i on from o r i g i n a l
da t a s e t

read bg (bg pop) ;

// load Tennessee ’ s NLCD data , and r a s t e r i z e d
b l o c k group boundary data

GDALDatasetH hDataset ;
GDALDatasetH hDataset2 ;
GDALDatasetH hDataset3 ;
GDALDatasetH hDataset4 ;
GDALAllRegister () ;
hDataset = GDALOpen(” . . /NLCD TN. t i f ” , GA ReadOnly

) ;
hDataset2 = GDALOpen(” . . /REMAINDER. t i f ” ,

GA ReadOnly) ;
hDataset3 = GDALOpen(” . . /QUOTIENT. t i f ” ,

GA ReadOnly) ;
hDataset4 = GDALOpen(” . . / r e s u l t . t i f ” , GA Update) ;

GDALRasterBandH hBand ;
GDALRasterBandH hBand2 ;
GDALRasterBandH hBand3 ;
GDALRasterBandH hBand4 ;
hBand = GDALGetRasterBand(hDataset , 1) ;
hBand2 = GDALGetRasterBand(hDataset2 , 1) ;
hBand3 = GDALGetRasterBand(hDataset3 , 1) ;
hBand4 = GDALGetRasterBand(hDataset4 , 1) ;

int r e l a t i o n [96]={−1} ;
r e l a t i o n [11]=0 ;
r e l a t i o n [21]=1 ;
r e l a t i o n [22]=2 ;
r e l a t i o n [23]=3 ;
r e l a t i o n [24]=4 ;
r e l a t i o n [31]=5 ;
r e l a t i o n [41]=6 ;
r e l a t i o n [42]=7 ;

17

r e l a t i o n [43]=8 ;
r e l a t i o n [52]=9 ;
r e l a t i o n [71]=10 ;
r e l a t i o n [81]=11 ;
r e l a t i o n [82]=12 ;
r e l a t i o n [90]=13 ;
r e l a t i o n [95]=14 ;

unsigned char ∗ land ;
unsigned char ∗ remainder ;
unsigned char ∗ quot i ent ;
int ASC[1 5] [4 1 2 5] ={0} ;
int nXSize = GDALGetRasterBandXSize (hBand) ;
land = (unsigned char ∗) CPLMalloc (s izeof (

unsigned char) ∗nXSize) ;
remainder = (unsigned char ∗) CPLMalloc (s izeof (

unsigned char) ∗nXSize) ;
quot i ent = (unsigned char ∗) CPLMalloc (s izeof (

unsigned char) ∗nXSize) ;

t ime t t s t a r t , t end ;
t s t a r t =time (NULL) ;

for (int j =0; j <9477; j++){
GDALRasterIO(hBand , GF Read , 0 , j ,

nXSize , 1 ,
land , nXSize , 1 , GDT Byte ,
0 , 0) ;

GDALRasterIO(hBand2 , GF Read , 0 , j ,
nXSize , 1 ,

remainder , nXSize , 1 , GDT Byte ,
0 , 0) ;

GDALRasterIO(hBand3 , GF Read , 0 , j ,
nXSize , 1 ,

quot ient , nXSize , 1 , GDT Byte ,
0 , 0) ;

for (int i =0; i <26038; i++){
int intLand=(int) land [i] ;
i f (r e l a t i o n [intLand]!=−1){

int bg id=(int) (quot i ent
[i]∗256+ remainder [i]) ;

ASC[r e l a t i o n [intLand]] [
bg id −1]++;

}
}

}

double ∗ c o e f f ;
// ge tCoe f f (coe f f ,ASC, bg pop) ;
// c r e a t e c s v (ASC,15 ,4125) ;

18

int bg ar r [4 1 2 5 ∗ 4] ;
int ASC arr [1 5 ∗ 4 1 2 5] ;
for (int i =0; i <4; i++){

for (int j =0; j <4125; j++){
bg ar r [i ∗4125+ j]=bg pop [j] [i] ;

}
}
for (int i =0; i <4125; i++){

for (int j =0; j <15; j++){
ASC arr [i ∗15+ j]=ASC[j] [i] ;

}
}

source (”/home/ zzhang22 / nlcd /Rcodes/ nn l s . r ”) ;
SEXP bgp , ascp ;
PROTECT(bgp=a l l o c V e c t o r (INTSXP,4125∗4)) ;
memcpy(INTEGER(bgp) , bg arr ,4125∗4∗ s izeof (int)) ;
PROTECT(ascp=a l l o c V e c t o r (INTSXP,15∗4125)) ;
memcpy(INTEGER(ascp) , ASC arr ,15∗4125∗ s izeof (int))

;

SEXP r g g c a l l ;
PROTECT(r g g c a l l=lang3 (i n s t a l l (” c o e f f ”) , bgp , ascp)

) ;
int errorOccurred ;
SEXP r e t=R tryEval (r g g c a l l , R GlobalEnv ,&

errorOccurred) ;
i f (! e r rorOccurred) {

c o e f f=REAL(r e t) ;
}
UNPROTECT(3) ;
Rf endEmbeddedR (0) ;

int tota lWeight [4125]={0} ;
for (int i =0; i <4125; i++){

for (int j =0; j <15; j++){
i f (j==1) tota lWeight [i]=

tota lWeight [i]+14∗ASC[j] [i] ;
else i f (j==2) tota lWeight [i]=

tota lWeight [i]+49∗ASC[j] [i] ;
else i f (j==3) tota lWeight [i]=

tota lWeight [i]+91∗ASC[j] [i] ;
else i f (j==4) tota lWeight [i]=

tota lWeight [i]+126∗ASC[j] [i] ;
else i f (j ==6|| j ==7|| j==8)

tota lWeight [i]= tota lWeight [i
]+10∗ASC[j] [i] ;

else i f (j ==11|| j ==12) tota lWeight
[i]= tota lWeight [i]+20∗ASC[j] [i

19

] ;
}

}
unsigned char ∗ r e s u l t ;
int weight ;
r e s u l t = (unsigned char ∗) CPLMalloc (s izeof (

unsigned char) ∗nXSize) ;
for (int j =0; j <9477; j++){

GDALRasterIO(hBand , GF Read , 0 , j ,
nXSize , 1 ,

land , nXSize , 1 , GDT Byte ,
0 , 0) ;

GDALRasterIO(hBand2 , GF Read , 0 , j ,
nXSize , 1 ,

remainder , nXSize , 1 , GDT Byte ,
0 , 0) ;

GDALRasterIO(hBand3 , GF Read , 0 , j ,
nXSize , 1 ,

quot ient , nXSize , 1 , GDT Byte ,
0 , 0) ;

for (int i =0; i <26038; i++){
int bg id=(int) (quot i ent [i]∗256+

remainder [i]) ;
i f (bg id!=0&&totalWeight [bg id
−1]!=0){

int intLand=(int) land [i
] ;

i f (r e l a t i o n [intLand]==1)
weight =14;

else i f (r e l a t i o n [intLand
]==2) weight =49;

else i f (r e l a t i o n [intLand
]==3) weight =91;

else i f (r e l a t i o n [intLand
]==4) weight =126;

else i f (r e l a t i o n [intLand
]==6 | | r e l a t i o n [intLand
]==7 | | r e l a t i o n [intLand
]==8) weight =10;

else i f (r e l a t i o n [intLand
]==11 | | r e l a t i o n [
intLand]==12) weight
=20;

else weight =0;
f loat temp=(f loat) (bg pop

[bg id −1] [1]) /
tota lWeight [bg id −1]∗
weight ;

r e s u l t [i]=(int) (s q r t (temp
) ∗100)−1;

20

i f (r e s u l t [i]==255) r e s u l t
[i]=0;

}
else r e s u l t [i]=0;

}
GDALRasterIO(hBand4 , GF Write , 0 , j ,

nXSize , 1 , r e s u l t , nXSize , 1 , GDT Byte
, 0 , 0) ;

}
t end = time (NULL) ;
p r i n t f (” time :%.0 f s \n” , d i f f t i m e (t end , t s t a r t)) ;
return 0 ;

}

D Parallel Code

#inc lude ” gdal . h”
#inc lude <math . h>
#inc lude ” c p l s t r i n g . h”
#inc lude ” cp l conv . h” /∗ f o r CPLMalloc () ∗/
#inc lude ” s t d i o . h”
#inc lude ” s t d l i b . h”
#inc lude ”mpi . h”
#inc lude <time . h>
#inc lude <Rembedded . h>
#inc lude <Rinte rna l s . h>
#inc lude <o g r a p i . h>

void c r e a t e c s v (i n t a [] [4 1 2 5] , i n t m, i n t n) {
FILE ∗ fp ;
i n t i , j ;
fp=fopen (” t e s t . csv ” ,”w+”) ;
f o r (i =0; i<m; i++){

f o r (j =0; j<n−1; j++){
f p r i n t f (fp ,”%d , ” , a [i] [j]) ;

}
f p r i n t f (fp ,”%d\n” , a [i] [n−1]) ;

}
}

void r ead c sv (i n t ∗bg pop) {
FILE ∗ fp = fopen (” . . /BG POP. csv ” ,” r ”) ;
i f (fp !=NULL) {

char l i n e [4] ;
i n t i =0;
whi l e (f g e t s (l i n e , s i z e o f l i n e , fp) !=NULL) {

i f (l i n e [0] ! = ’\n’&& l i n e [0] ! = ’\ r ’) {
bg pop [i]= a t o i (l i n e) ;
i ++;

}

21

}
f c l o s e (fp) ;

}
e l s e {

per ro r (” user . dat ”) ;
}

}

void source (const char ∗name) {
SEXP e ;

PROTECT(e=lang2 (i n s t a l l (” source ”) , mkString (name))
) ;

R tryEval (e , R GlobalEnv ,NULL) ;
UNPROTECT(1) ;

}

void read bg (i n t ∗∗ pop by race) {
i n t r a r g c = 2 ;
char ∗ r a rgv [] = { ”R” , ”−− s i l e n t ” } ;
Rf initEmbeddedR (r argc , r a rgv) ;
OGRRegisterAll () ;
OGRDataSourceH hDS ;
hDS = OGROpen(”/home/ zzhang22 / nlcd / Input /

bg boundary/ cb 2015 47 bg 500k . shp ” , FALSE,
NULL) ;

i f (hDS == NULL) {
p r i n t f (”Open f a i l e d .\n”) ;
e x i t (1) ;

}
OGRLayerH hLayer ;

hLayer = OGR DS GetLayer (hDS , 0) ;
OGRFeatureH hFeature ;

OGR L ResetReading (hLayer) ;
i n t i =0;
i n t geo l en =4125;
char ∗GEOID[4 1 2 5] ;
whi l e ((hFeature = OGR L GetNextFeature (hLayer))

!= NULL) {
OGRFeatureDefnH hFDefn =

OGR L GetLayerDefn (hLayer) ;
i n t i F i e l d =5;
GEOID[i]=OGR F GetFieldAsString (hFeature

, i F i e l d) ;
i ++;

}
source (”/home/ zzhang22 / nlcd /Rcodes/ACS. r ”) ;
SEXP arg ;

22

PROTECT(arg=a l l o c V e c t o r (STRSXP, geo l en)) ;
f o r (i =0; i<geo l en ; i++){

SET STRING ELT(arg , i , Rf mkChar (GEOID[i]))
;

}
SEXP ACS call ;
PROTECT(ACS call=lang2 (i n s t a l l (”ACS”) , arg)) ;
i n t errorOccurred ;
SEXP r e t=R tryEval (ACS call , R GlobalEnv ,&

errorOccurred) ;
double ∗pop ;
i f (! e r rorOccurred) {

pop=REAL(r e t) ;
f o r (i n t i =0; i<geo l en ; i++){

f o r (i n t j =0; j <4; j++){
pop by race [i] [j]=(i n t)

pop [i+j ∗ geo l en] ;
}

}
}
UNPROTECT(2) ;

}

i n t mal loc2d int (i n t ∗∗∗ array , i n t n , i n t m) {

/∗ a l l o c a t e the n∗m cont iguous items ∗/
i n t ∗p = (i n t ∗) c a l l o c (n∗m, s i z e o f (i n t)) ;
i f (! p) re turn −1;

/∗ a l l o c a t e the row p o i n t e r s i n to the memory ∗/
(∗ array) = (i n t ∗∗) mal loc (n∗ s i z e o f (i n t ∗)) ;
i f (! (∗ array)) {

f r e e (p) ;
r e turn −1;

}

/∗ s e t up the p o i n t e r s i n to the cont iguous memory
∗/

f o r (i n t i =0; i<n ; i++)
(∗ array) [i] = &(p [i ∗m]) ;

r e turn 0 ;
}

i n t f r e e 2 d i n t (i n t ∗∗∗ array) {
/∗ f r e e the memory − the f i r s t element o f the

array i s at the s t a r t ∗/
f r e e (&((∗ array) [0] [0])) ;

/∗ f r e e the p o i n t e r s i n to the memory ∗/

23

f r e e (∗ array) ;

r e turn 0 ;
}

i n t main (i n t argc , char ∗∗ argv)
{

// proce s s id and number o f co r e s used
i n t myrank , nprocs ;
// to c a l c u l a t e time used
t ime t t s t a r t , t end ;

// block group populat ion o f a l l f e a t u r e s
i n t ∗∗ b g p o p a l l ;

i n t feature num =4;// t o t a l f e a t u r e s to ana lyze in
ACS Summary Table

i n t part ; // Which part o f the map w i l l t h i s
p roc e s s ana lyze

i n t f e a t u r e ; // Which f e a t u r e w i l l t h i s p roce s s
ana lyze

// block group populat ion o f a c e r t a i n f e a t u r e
i n t bg pop one [4 1 2 5] ;

// load Tennessee ’ s NLCD data , and r a s t e r i z e d
block group boundary data

GDALDatasetH hDataset ;
GDALDatasetH hDataset2 ;
GDALDatasetH hDataset3 ;
GDALDatasetH hDataset4 ;
GDALAllRegister () ;
hDataset = GDALOpen(” . . /NLCD TN. t i f ” , GA ReadOnly

) ;
hDataset2 = GDALOpen(” . . /REMAINDER. t i f ” ,

GA ReadOnly) ;
hDataset3 = GDALOpen(” . . /QUOTIENT. t i f ” ,

GA ReadOnly) ; // remainder . t i f and quot i ent . t i f
t oge the r r e p r e s e n t the block group id

GDALRasterBandH hBand ;
GDALRasterBandH hBand2 ;
GDALRasterBandH hBand3 ;
GDALRasterBandH hBand4 ;
hBand = GDALGetRasterBand(hDataset , 1) ;
hBand2 = GDALGetRasterBand(hDataset2 , 1) ;
hBand3 = GDALGetRasterBand(hDataset3 , 1) ;

// a l l o c a t e b u f f e r f o r read ing / wr i t i ng a band
unsigned char ∗ land ;

24

unsigned char ∗ remainder ;
unsigned char ∗ quot i ent ;
unsigned char ∗ r e s u l t ;

i n t nXSize = GDALGetRasterBandXSize (hBand) ;
i n t nYSize = GDALGetRasterBandYSize (hBand) ;
land = (unsigned char ∗) CPLMalloc (s i z e o f (

unsigned char) ∗nXSize) ;
remainder = (unsigned char ∗) CPLMalloc (s i z e o f (

unsigned char) ∗nXSize) ;
quot i ent = (unsigned char ∗) CPLMalloc (s i z e o f (

unsigned char) ∗nXSize) ;
r e s u l t = (unsigned char ∗) CPLMalloc (s i z e o f (

unsigned char) ∗nXSize) ;

//ASC i s the number o f 30m∗30m g r i d s in a block
group f o r a s p e c i f i c land type .

// Becasue the re are 15 d i f f e r e n t land types and
4125 d i f f e r e n t block groups , the array i s in
15∗4125

i n t ∗∗ASC;
i n t ∗∗ real ASC ;

//To s t o r e the t o t a l weights f o r every block
group

i n t tota lWeight [4125]={0} ;

// weight f o r each 30m∗30m gr id
i n t weight ;

// r e l a t i o n between the number in NLCD data and
landtype

i n t r e l a t i o n [96]={−1} ;
r e l a t i o n [11]=0 ;
r e l a t i o n [21]=1 ;
r e l a t i o n [22]=2 ;
r e l a t i o n [23]=3 ;
r e l a t i o n [24]=4 ;
r e l a t i o n [31]=5 ;
r e l a t i o n [41]=6 ;
r e l a t i o n [42]=7 ;
r e l a t i o n [43]=8 ;
r e l a t i o n [52]=9 ;
r e l a t i o n [71]=10 ;
r e l a t i o n [81]=11 ;
r e l a t i o n [82]=12 ;
r e l a t i o n [90]=13 ;
r e l a t i o n [95]=14 ;

// I n i t i a l i z e MPI

25

MPI Init(&argc , &argv) ;
MPI Comm rank(MPI COMM WORLD, &myrank) ;// get the

rank o f each proce s s
MPI Comm size (MPI COMM WORLD, &nprocs) ; // get the

number o f c o r e s used

part=myrank%feature num ;
f e a t u r e=myrank/ feature num ;

i f (f e a t u r e==0)
hDataset4 = GDALOpen(” . . / r e s u l t 1 . t i f ” ,

GA Update) ;
e l s e i f (f e a t u r e==1)

hDataset4 = GDALOpen(” . . / r e s u l t 2 . t i f ” ,
GA Update) ;

e l s e i f (f e a t u r e==2)
hDataset4 = GDALOpen(” . . / r e s u l t 3 . t i f ” ,

GA Update) ;
e l s e i f (f e a t u r e==3)

hDataset4 = GDALOpen(” . . / r e s u l t 4 . t i f ” ,
GA Update) ;

hBand4 = GDALGetRasterBand(hDataset4 , 1) ;

//4125 i s the number o f b lock groups in Tennessee
, 4 i s the number o f f e a t u r e s in ACS Table

mal loc2d int (& bg pop a l l , 4 125 , 4) ;
ma l loc2d int (&ASC,15 ,4125) ;
ma l loc2d int (&real ASC ,15 ,4125) ;
//We use t h i s f unc t i on because we want a l l

e lements o f the 2−d array l i e s cont i guous ly
// so that we can broadcast i t to other p r o c e s s e s

us ing MPI .

i f (myrank==0){
read bg (b g p o p a l l) ;

}
// pass t h i s va lue to every other p roce s s
MPI Bcast (&(b g p o p a l l [0] [0]) ,4125∗4 ,MPI INT , 0 ,

MPI COMM WORLD) ;

f o r (i n t i =0; i <4125; i++){
bg pop one [i]= b g p o p a l l [i] [f e a t u r e] ;

}

t s t a r t=time (NULL) ;
//Each proce s s w i l l be r e s p o n s i b l e f o r read

s e v e r a l rows in th map l i k e t h i s :
//−−−−−−−−−−−−−−−−−−−−−−−−
// proce s s 1
//

26

//−−−−−−−−−−−−−−−−−−−−−−−−
// proce s s 2
//
//−−−−−−−−−−−−−−−−−−−−−−−−
// proce s s 3
//
//−−−−−−−−−−−−−−−−−−−−−−−−
// proce s s 4
//
//−−−−−−−−−−−−−−−−−−−−−−−−
i f (f e a t u r e==0){

f o r (i n t j=part ∗(nYSize/ c e i l ((f l o a t) nprocs
/ feature num) +1) ; j<(part +1)∗(nYSize/
c e i l ((f l o a t) nprocs / feature num) +1) ; j
++){

i f (j>=nYSize) break ;
//Read the land type in to ’ land ’
GDALRasterIO(hBand , GF Read , 0 ,

j , nXSize , 1 ,
land , nXSize , 1 , GDT Byte

,
0 , 0) ;

//Read the block group i d s in to ’
remainder ’ and ’ quot ient ’

GDALRasterIO(hBand2 , GF Read , 0 ,
j , nXSize , 1 ,

remainder , nXSize , 1 ,
GDT Byte ,

0 , 0) ;
GDALRasterIO(hBand3 , GF Read , 0 ,

j , nXSize , 1 ,
quot ient , nXSize , 1 ,

GDT Byte ,
0 , 0) ;

f o r (i n t i =0; i<nXSize ; i++){
i n t intLand=land [i] ;
i f (r e l a t i o n [intLand]!=−1)
{

i n t bg id=(
quot i ent [i
]∗256+
remainder [i]) ;

ASC[r e l a t i o n [
intLand]] [
bg id −1]++;

}
}

}
}
MPI Allreduce (&(ASC [0] [0]) ,&(real ASC [0] [0])

27

,4125∗15 ,MPI INT ,MPI SUM,MPI COMM WORLD) ;

double ∗ c o e f f ;

// spread the 2d array to a 1d array so that i t i s
easy to be tranformed in to an R vecto r

i n t bg ar r [4 1 2 5 ∗ 4] ;
i n t ASC arr [1 5 ∗ 4 1 2 5] ;

f o r (i n t i =0; i <4; i++){
f o r (i n t j =0; j <4125; j++){

bg ar r [i ∗4125+ j]= b g p o p a l l [j] [i
] ;

}
}

f o r (i n t i =0; i <4125; i++){
f o r (i n t j =0; j <15; j++){

ASC arr [i ∗15+ j]=real ASC [j] [i] ;
}

}

source (”/home/ zzhang22 / nlcd /Rcodes/ nn l s . r ”) ;
SEXP bgp , ascp ;
PROTECT(bgp=a l l o c V e c t o r (INTSXP,4125∗4)) ;
memcpy(INTEGER(bgp) , bg arr ,4125∗4∗ s i z e o f (i n t)) ;
PROTECT(ascp=a l l o c V e c t o r (INTSXP,15∗4125)) ;
memcpy(INTEGER(ascp) , ASC arr ,15∗4125∗ s i z e o f (i n t))

;

SEXP r g g c a l l ;
PROTECT(r g g c a l l=lang3 (i n s t a l l (” c o e f f ”) , bgp , ascp)

) ;
i n t errorOccurred ;
SEXP r e t=R tryEval (r g g c a l l , R GlobalEnv ,&

errorOccurred) ;
i f (! e r rorOccurred) {

c o e f f=REAL(r e t) ;
}
UNPROTECT(3) ;
Rf endEmbeddedR (0) ;

/∗Here we get the weights f o r each c e l l (s to r ed in double ∗
c o e f f) by non−negat ive r e g r e s s i o n method . However ,

the c o e f f i c i e n t s determined are not very s a t i s f a c t o r y .
So we use some pre−determined weights in t h i s program

. S t i l l , we have b u i l t the ba s i c s t r u c t u r e o f doing
r e g r e s s i o n us ing embedded R. In the next step , we only
need to change the codes in R to help us get b e t t e r

weights , and use these weights to r e p l a c e the

28

a r b i t r a r i l y a s s i gned weights below .∗/

f o r (i n t i =0; i <4125; i++){
f o r (i n t j =0; j <15; j++){

i f (j ==1) tota lWeight [i]=
tota lWeight [i]+14∗ real ASC [j] [
i] ; / / 1 4 , 49 , 9 1 . . . here w i l l
be r ep laced by r e g r e s s i o n
c o e f f i c i e n t s

e l s e i f (j ==2) tota lWeight [i]=
tota lWeight [i]+49∗ real ASC [j] [
i] ;

e l s e i f (j ==3) tota lWeight [i]=
tota lWeight [i]+91∗ real ASC [j] [
i] ;

e l s e i f (j ==4) tota lWeight [i]=
tota lWeight [i]+126∗ real ASC [j
] [i] ;

e l s e i f (j ==6|| j ==7|| j==8)
tota lWeight [i]= tota lWeight [i
]+10∗ real ASC [j] [i] ;

e l s e i f (j ==11|| j ==12) tota lWeight
[i]= tota lWeight [i]+20∗ real ASC
[j] [i] ;

}
}

f o r (i n t j=part ∗(nYSize/ c e i l ((f l o a t) nprocs /
feature num) +1) ; j<(part +1)∗(nYSize/ c e i l ((f l o a t
) nprocs / feature num) +1) ; j++){

i f (j>=nYSize) break ;
GDALRasterIO(hBand , GF Read , 0 , j ,

nXSize , 1 ,
land , nXSize , 1 , GDT Byte ,
0 , 0) ;

GDALRasterIO(hBand2 , GF Read , 0 , j ,
nXSize , 1 ,

remainder , nXSize , 1 , GDT Byte ,
0 , 0) ;

GDALRasterIO(hBand3 , GF Read , 0 , j ,
nXSize , 1 ,

quot ient , nXSize , 1 , GDT Byte ,
0 , 0) ;

f o r (i n t i =0; i<nXSize ; i++){
i n t bg id=(quot i ent [i]∗256+

remainder [i]) ;
i f (bg id!=0&&totalWeight [bg id
−1]!=0){

i n t intLand= land [i] ;
i f (r e l a t i o n [intLand]==1)

29

weight =14;
e l s e i f (r e l a t i o n [intLand

]==2) weight =49;
e l s e i f (r e l a t i o n [intLand

]==3) weight =91;
e l s e i f (r e l a t i o n [intLand

]==4) weight =126;
e l s e i f (r e l a t i o n [intLand

]==6 | | r e l a t i o n [intLand
]==7 | | r e l a t i o n [intLand
]==8) weight =10;

e l s e i f (r e l a t i o n [intLand
]==11 | | r e l a t i o n [
intLand]==12) weight
=20;

e l s e weight =0;
f l o a t temp=(f l o a t) (

bg pop one [bg id −1]) /
tota lWeight [bg id −1]∗
weight ;

r e s u l t [i]=(i n t) (s q r t (temp
) ∗100)−1;

i f (r e s u l t [i]==255) r e s u l t
[i]=0;

}
e l s e r e s u l t [i]=0;

}
GDALRasterIO(hBand4 , GF Write , 0 , j ,

nXSize , 1 ,
r e s u l t , nXSize , 1 , GDT Byte ,
0 , 0) ;

}
t end = time (NULL) ;
p r i n t f (” time : %.0 f s \n” , d i f f t i m e (t end , t s t a r t))

;

f r e e 2 d i n t (& b g p o p a l l) ;
f r e e 2 d i n t (&ASC) ;
f r e e 2 d i n t (&real ASC) ;

MPI Final ize () ;
r e turn 0 ;

}

E R Code

I have written two R functions. The first one is responsible for extracting
ACS Summary Table data. The second one is responsible for doing regression
estimation.

ACS<−function (z) {

30

A<−read . csv (’/home/zzhang22/nlcd/ Input/ACS/ a f f
download−4/ACS 14 5YR B02001 with ann . csv ’)

myvars<−c (”GEO. id2 ” , ”HD01 VD01” , ”HD01 VD02” , ”HD01
VD03” , ”HD01 VD05”)

A<−A[myvars]
B<−as . data . frame (z)
B$GROUPID<−seq . i n t (nrow(B))
C<−merge(x=A, y=B,by . x=”GEO. id2 ” ,by . y=”z”)
myvars2<−c (”GROUPID” , ”HD01 VD01” , ”HD01 VD02” , ”

HD01 VD03” , ”HD01 VD05”)
C<−C[myvars2]
attach (C)
C<−C[order (GROUPID) ,]
detach (C)
myvars3<−c (”HD01 VD01” , ”HD01 VD02” , ”HD01 VD03” , ”

HD01 VD05”)
C<−C[myvars3]
for (i in 1 : 4)

C[, i]<−as .numeric (as . character (C[, i]))
C<−as . matrix (C)
D<−as . vector (C)
return (D) ;

}

c o e f f<−function (pop , land) {
l ibrary (nn l s)
A<−matrix (pop ,nrow=4125 ,ncol=4)
B<−matrix (land ,nrow=15,ncol=4125)
B<−t (B)
A1=A[, 1]
A2=A[, 2]
A3=A[, 3]
A4=A[, 4]
b1=nnl s (B, A1)
b2=nnl s (B, A2)
b3=nnl s (B, A3)
b4=nnl s (B, A4)
b=c (b1$x , b2$x , b3$x , b4$x)
return (b)

}

31

	Introduction
	Dasymetric Mapping
	Parallel Method

	Regression Weighting method
	Steps
	Data Preparation
	National Land Cover Data
	Block Group Boundary File
	American Community Survey Summary Table

	Regression Estimation
	Calculation
	Parallelize

	Penalized Maximum Entropy Dasymetric Mapping(P-MEDM)
	Introduction
	Steps
	Implementation Details

	Future Work
	Regression Coefficients
	Increasing Scale
	Cutting Data
	P-MEDM

	Conclusion
	Terms explanation
	Block Group
	PUMA
	Trust Region Method

	Tips on running the code
	Serial Code
	Parallel Code
	R Code

