

Decoding Brainwave Data using Regression

Justin Kilmarx: The University of Tennessee, Knoxville David Saffo: Loyola University Chicago Lucien Ng: The Chinese University of Hong Kong Mentor: Dr. Xiaopeng Zhao

Introduction

Brain-Computer Interface (BCI)

Applications

Manipulation of external devices (e.g. wheelchairs)

For communication in disabled people

Rehabilitation robotics

Diagnosis and prediction of diseases (e.g. Parkinson's disease, Seizure, Epilepsy)

Games

Invasive vs Noninvasive

Electrocorticography Fifer et al. (2012) Electroencephalography Mcfarland & Wolpaw (2011)

Background

Invasive

Noninvasive Sensorimotor Rhythms (SMR) Steady-State Visual Evoked Potential (SSVEP) **Imagined Body Kinematics** Continuous decoding the kinematic parameters during imaginary movements of one body part Short time of training Natural imaginary movement Smoother controller system Possibility of developing a generalized decoder Eliminating Subject dependency

Research Objective and Setup

Objective: The goal of this project was to improve the prediction accuracy for a previously developed BCI model that used linear regression to predict cursor velocity from a subject's thoughts by testing new methods and nonlinear models.

Setup

Emotiv EPOC for recording EEG signals BCI2000 for cursor visualization and data collectection Matlab/Python for processing

Training

Automated cursor movement on computer monitor in 1D Subject imagines following movement with dominant hand 10 trials

5 horizontal

5 vertical

1 minute each

Cross validation between trials 33 Subjects

Filtering

Raw EEG signals contain a lot of noise
4th order Butterworth lowpass filter with cutoff at 1 Hz
Attempted using bandpass over Mu, Alpha, and Beta bands, but these did not contain useful information for imagined body kinematics

Regression

Predict cursor velocity from EEG data

12 previous points in memory as features

Trial wise cross validation

Average prediction accuracy using goodness of fit on linear regression model Horizontal: 70.77%

Vertical: 44.67%

Results

Actual Velocity

Predicted Velocity

Results

Other models did not show significant improvements and were more computationally expensive (adaboost regression, ridge regression, kernel ridge regression, support vector regression, and multilayer perceptron)

Channel Importance

Channel-wise identification Horizontal (top) F7 and F8 Right hemisphere Vertical (bottom) AF3 and AF4 F3 and F4 Clear pattern between horizontal and vertical Right hemisphere controls left body

Results

Channels	Horizontal Accuracy	Vertical Accuracy
All Channels	70.77%	44.67%
F7, 02, P8, T8, FC6, F4, F8, AF4	71.03%	41.68%
F7 and F8	69.93%	25.64%
F7, FC5, T8, FC6, F4, F8	72.73%	36.98%
AF3 AND AF4	41.93%	30.29%
AF3, F3, F4, and AF4	49.21%	33.09%
AF3, F3, F7, F8, F4, and AF4	69.97%	41.61%

Classification

Horizontal vs. Vertical

FFT analysis across 14 channels in 1 second samples

224 total features from 4 bands: Theta (4-7 Hz), Alpha (8-15 Hz), Beta (16-32 Hz), and Gamma (32-40 Hz)

Mean PSD, median PSD, min PSD, max PSD

Model trained with Random Forest

Results

		1.0 -	T	Т		
Channels/Features	Average Accuracy Score	0.9 -				Ŧ
All Channels/All Features	79%	0.8 -				
All Channels/Means	80%	0.7 -				
Six Channels/All Features	68%	0.6 -		<u> </u>		
Six Channels/Means	69%		atures	alleans	atures	Means
		þ	II Cramestall Fer	All Channelsh	A Channelstaufer St	, Channelsi

Serial vs. Distributed

Results were generated using distributed computing

Dask Distributed Library

Cluster setup on Comet at the San Diego Supercomputer Center

Serial	Adaboost	04:30:00
Distributed	Adaboost	00:4:29

EEG-Based Control of a Computer Cursor with Machine Learning

Lucien Ng(The Chinese University of Hong Kong), Justin Kilmarx (University of Tennessee), David Saffo (Loyola University Chicago)

EEG-Based Cursor Movement Classification

In the sense of machine learning, this is a supervised multiclass classification. The specification as follow:

- Input EEG data (time series) with 128 Hz and 14 channels
- Vertical Left Right No Movement
 Horizontal Up Down No Movement
 point

n time

Objective

- To classify the user indenting cursor movement by using EEG signal with high accuracy, and
- To accelerate the process to acceptable speed

Overview of Models

Workflow

Feature Extraction: Filter Bank

Left low pass filter: Only past time points were used to train and test

te	ne mo	Psychological or Physiological State	Changes in EEG Waves	
Λ	Inlind	Deep sleep	Predominance of the delta wave	ŗ
	hien	Concentrated	Suppression of the alpha wave	• 7
1	H_7 2	Vigilant	Generation of beta wave	
	· · · <i>C</i>	Recognition of sensory stimuli	Changes in gamma wave	
High	^{fr} Hz, 9	Hz, 15 Hz, 3	0 Hz	

Classifying : Multilayer perceptron

Classifying: Recurrent Neural Network

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

IN

≻OUT

Models Ensembling: Gradient Boosting

Residual fitting

Gradient Boosted Regression Trees in scikit-learn. Available: https://www.slideshare.net/DataRobot/gradient-boosted-regression-trees-in-scikitlearn

Experimental Setup

- 12 Subjects' data were used
- Each of them has 5 trials about horizontal / vertical movements
- Validation:

		Trials	1 st , 2 nd and 3 rd	4 th	5 th
	C	Basic Models	Training Data	Validation	Validation
•	Cr co.	Ensemble Models	-	2-fold Valid	2-fold Valid

 The experiment ran on XSEDE-bridges with 16 CPU-cores and GPU (P100)

Multithread

All the train-validation sets can run independently.

All the event classifiers can be trained independently

Lets utilize all the CPU-cores!

	[100.0%]		[100.0%]	15 [100.0%]	22	[100.0%]
	[[100.0%]	16 [100.0%]	23	; [100.0%]
	[100.0%]	10	[100.0%]	17 [100.0%]	24	[
	[11	[18 [100.0%]	25	[100.0%]
	[12	[100.0%]	19 [26	6 [
	[13	[20 [27	′[100.0%]
	[14	[100.0%]	21 [28	; [100.0%]
Merr	C			Tasks: 123, 1964 thr; 67 running		
Swp	[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		252/252MB]	Load average: 35.14 13.71 5.36		
				Uptime: 23 days, 02:55:45		

Results: Horizontal

The best basic model:

- Preprocessed by filter bank
- Neural Network with 32 hidden units

The Accuracy/AUC of subjects

Results

Prediction	AUC	Accuracy	Total Time
Horizontal	0.91	80%	10.5 hours
Vertical	0.71	60%	10.5 hours

Time for a training process = 10 minutes

Acceleration: Magma-DNN

MAGMA-DNN: Toward a More Flexible DNN Framework for Low-Level Implementation

- Magma is a large, well-supported software package designed for computations in algebra, number theory, algebraic geometry and algebraic combinatorics
- The main operation in neural network is matrix multiplication.
- Lets try to use Magma to build a neural network!

Advantage

Open-source

Flexibility: Free to implement any mathematical function for both CPU and GPU with Magma

Fast

Benchmark: MNIST dataset

Number of input size Number of Hidden u Batch size: 100 20 Number of iteration: 6789 6789 Dat (32 **DITS**) ce GTX 1050Ti

Comparison with other DNN frameworks

	MAGMA-DNN	Caffe	TensorFlow
Speed	Fast	Fast	Relatively Slow
Input Data Format	Support Native Pointer Array	HDF5 Only	NumPy
Dependency	MAGMA	Protobuf, HDF5, CUDA, BLAS, OpenCV, Boost	CUDA, NumPy

Architecture

TENNESSEE KNOXVILLE

Code Example

InputLayer<float> inputLayer(inputMat);
FCLayer<float> FC1(&inputLayer, n_hidden_units);
ActivationLayer<float> actv1(&FC1, SIGMOID);
FCLayer<float> FC2(&actv1, n_output_classes);
OutputLayer<float> outputLayer(&FC2, labelsMat, BIN_CROSSENTROPY_WITH_SIGMOID);

```
Network construction
```

```
std::vector<Layer<float>*> vec_layer;
vec_layer.push_back(&outputLayer);
vec_layer.push_back(&FC1);
vec_layer.push_back(&actv1);
vec_layer.push_back(&FC2);
vec_layer.push_back(&outputLayer);
```



```
for (int i = 0; i < (int) vec_layer.size(); i++) vec_layer[i]->forward_gpu();
for (int i = vec_layer.size() - 1; i >= 0; i--) {
    vec_layer[i]->update();
    if (i >= 2) vec_layer[i]->backward_gpu(); // fcl doesn't need to backward
}
```

TENNESSEE KNOXVILLE

Future Works

Explore the EEG data by apply more machine learning techniques on it Implement Convolutional Neural Network and Recurrent Neural Network on MAGMA

Apply MAGMA-DNN on the EEG data analysis

