

EEG Imaginary Body Kinematics Regression

Justin Kilmarx, David Saffo, and Lucien Ng



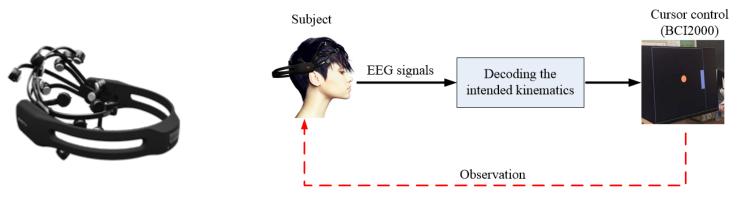
香港中文大學 The Chinese University of Hong Kong

Introduction

- Brain-Computer Interface (BCI)
- Applications:
 - Manipulation of external devices (e.g. wheelchairs)
 - For communication in disabled people
 - Rehabilitation robotics
 - Diagnosis and prediction of diseases (e.g. Parkinson's disease, Seizure, Epilepsy)
 - Games
- Invasive vs Noninvasive
 - Electrocorticography•Fifer et al. (2012)
 - Electroencephalography
 Mcfarland & Wolpaw (2011)

Background

Invasive


Noninvasive

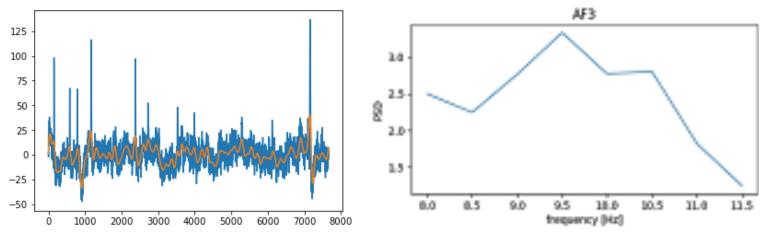
- Sensorimotor Rhythms (SMR)
- Steady-State Visual Evoked Potential (SSVEP)
- Imagined Body Kinematics
 - Continuous decoding the kinematic parameters during imaginary movements of one body part
 - Short time of training
 - Natural imaginary movement
 - Smoother controller system
 - Possibility of developing a generalized decoder
 - Eliminating Subject dependency

Research Objective and Setup

- Objective: Improve the training model accuracy of a noninvasive BCI system based on extracted information from EEG signals and through imagined body kinematics
- Setup
 - Emotiv EPOC for recording EEG signals
 - BCI2000 for cursor visualization and data collectection
 - Matlab/Python for processing

Training

- Automated cursor movement on computer monitor in 1D
- Subject imagines following movement with dominant hand
- 10 trials
 - 5 horizontal
 - 5 vertical
- 1 minute each
- Cross validation between trials

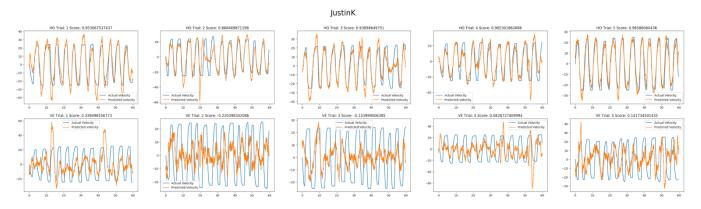

Data

- 35 Subjects
- 10 trials each (5 vertical/5 horizontal)
- 14 channels each
- 12 million rows total

sub	H/V	trial	posX	posY	AF3	F7	F3	FC5	T7	P7	01	02	P8	T8	FC6	F4	F8	AF4	vol
SoheilB	н	1	2046	2047	2.6118	16.583	-6.0334	-1.0284	8.3647	-6.3642	-8.0171	-5.4992	-10.207	-5.4653	-14.298	-10.188	-15.045	-22.201	-0.15625
SoheilB	н	1	2046	2047	-2.0416	12.659	-8.5144	-5.9059	2.9563	-8.8454	-9.2852	-8.7106	-17.87	-18.082	-19.582	-13.624	-17.852	-24.096	-0.15625
SoheilB	н	1	2046	2047	10.823	19.365	2.625	-0.95381	4.9331	0.40383	-5.4473	0.83103	-11.607	-12.221	-6.6745	-1.8286	-6.4066	-8.2475	-0.15625
SoheilB	н	1	2046	2047	19.962	22.883	10.961	1.4144	7.2904	5.0127	-2.9964	7.0874	-6.9255	-2.2559	1.5866	7.9904	0.03677	-0.90293	-0.15625
SoheilB	н	1	2046	2047	18.28	22.552	13.188	0.82313	7.047	1.2093	-3.6332	2.0584	-8.7876	0.057505	-0.9211	7.9882	-2.8258	-5.9083	-0.15625
SoheilB	н	1	2046	2047	18.576	25.85	13.695	1.8304	7.387	-3.6896	-8.7162	-5.438	-10.173	-3.5671	-3.4477	5.2993	-7.5064	-10.164	-0.15625
SoheilB	н	1	2046	2047	25.576	31.571	14.786	3.7998	6.6175	-6.4211	-17.408	-9.4667	-12.26	-10.461	-5.1832	3.8787	-10.085	-9.8709	-0.15625
SoheilB	н	1	2046	2047	32.429	34.746	18.268	6.8122	5.2167	-3.4175	-19.607	-10.616	-15.448	-13.012	-5.8673	7.4101	-6.1348	-4.7161	-0.15625
SoheilB	н	1	2046	2047	34.277	34.484	22.449	9.7628	6.2446	1.7528	-11.349	-7.1529	-12.53	-5.0042	1.2907	17.098	5.7678	4.3836	-0.15625
SoheilB	н	1	2046	2047	33.127	33.725	24.108	9.5312	7.6565	-1.7005	-4.1335	-1.1005	-3.3167	5.8663	12.52	23.88	17.667	9.1226	-0.15625
SoheilB	н	1	2046	2047	32.367	32.831	22.638	6.236	7.6018	-9.0785	-4.709	1.8478	3.3523	11.933	16.439	23.404	20.409	6.2867	-0.15625
SoheilB	н	1	2046	2047	28.79	26.731	17.054	0.71783	5.9575	-8.4725	-6.135	2.6204	3.7284	12.856	12.425	19.752	13.279	3.4819	-0.15625
SoheilB	н	1	2046	2047	20.776	18.731	10.076	-4.498	1.0068	-5.3214	-4.8139	2.5918	0.83793	6.9713	8.1043	13.487	4.8711	3.631	-0.15625
SoheilB	н	1	2046	2047	20.092	24.048	13.029	0.076558	0.44429	-4.4935	-3.5773	2.7123	1.2476	2.8463	8.6648	10.077	6.7349	4.9273	-0.15625
SoheilB	н	1	2046	2047	30.369	40.004	24.124	13.017	12.609	-0.04507	-2.5613	8.2692	9.2366	13.26	13.495	15.59	16.766	7.3276	-0.15625
SoheilB	н	1	2046	2047	32.328	42.072	22.601	14.463	22.034	2.0854	-4.5408	13.857	15.456	24.856	15.374	17.413	18.191	4.4983	-0.15625
SoheilB	н	1	2046	2047	19.503	27.278	7.6588	1.4819	14.266	-6.4391	-13.182	6.4261	8.6169	18.034	9.6653	6.8286	7.8581	-6.1522	-0.15625
SoheilB	н	1	2046	2047	11.084	18.708	0.87778	-5.2839	4.2167	-14.799	-19.726	-6.2647	-4.6681	3.6359	2.9438	-1.3786	1.6392	-13.088	-0.15625
SoheilB	н	1	2046	2047	14.17	23.568	5.6561	0.13673	5.0571	-12.316	-14.414	-7.4935	-10.409	1.6472	2.735	0.32597	5.4097	-11.707	-0.15625
SoheilB	н	1	2046	2047	19.431	29.688	10.872	5.8593	8.4921	-4.1542	-5.0111	-3.098	-6.1457	9.4531	7.2453	2.7538	9.6012	-8.932	-0.15625
SoheilB	н	1	2046	2047	25.226	31.701	16.007	7.176	9.3759	1.525	-2.5176	-3.581	0.51747	13.763	11.014	5.8392	10.601	-5.6902	-0.15625
SoheilB	н	1	2045	2047	29.999	31.251	20.76	6.7065	11.137	1.5723	-4.115	-2.6185	2.1706	12.297	12.372	13.734	13.457	-1.7045	-0.15625
SoheilB	н	1	2045	2047	27.089	30.553	20.718	7.744	12.754	0.044938	-3.4907	3.819	1.0616	10.776	13.302	20.133	17.877	0.64061	-0.15625
SoheilB	н	1	2045	2047	19.422	31.34	17.888	10.071	12.029	0.53726	-2.5825	6.2711	1.8607	8.4965	13.105	19.266	15.498	2.3848	-0.15625
SoheilB	н	1	2045	2047	15.285	28.545	14.632	6.8581	8.3526	-3.0716	-5.2808	-0.14487	-1.3857	1.0047	7.0304	13.083	4.7636	0.81357	-0.15625

Clean Up

- Raw signal contains a lot of noise
- Low pass filter + ICA to filter signal
- Band pass filter to isolate frequency ranges of interest


Features

- 13 points in memory
- Power spectral density in 3 frequency ranges
 - Alpha
 - Beta
 - Mu
- Coefficients Generated by a Classification Model
 - Predicts if velocity will be positive or negative

Training, Testing, and Results

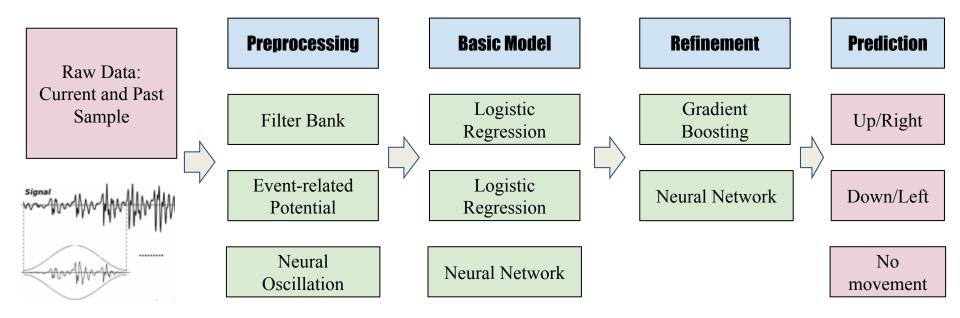
- Models are trained on linear and nonlinear algorithms
 - Linear Regression, Kernel Ridge, Adaboost
- Test with trial wise cross-validation
 - 1 trial left out as test 4 used for training, rotate
 - Scored using the average correlation of the two curves over five windows

1-D Movement Classification

Formalized Problem

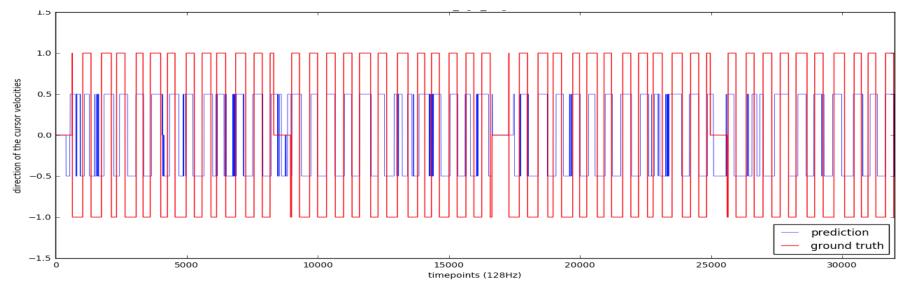
Input

• EEG data (time series) with 128 Hz and 14 channels

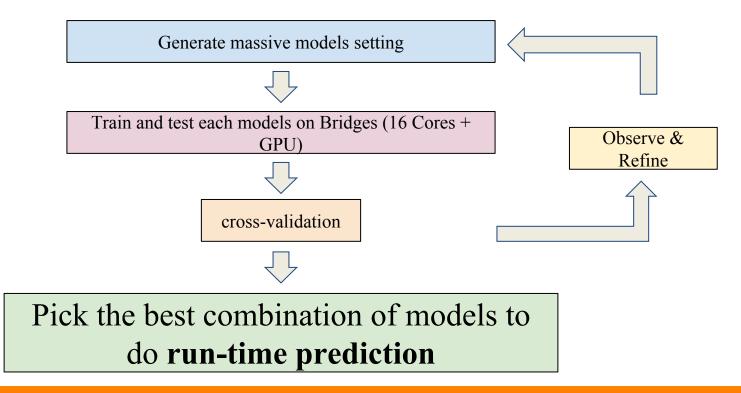

Predict

The cursor movement direction at any given time point

- Vertical: Left / Right / No
- Horizontal: Up / Down / No



Overview of Model

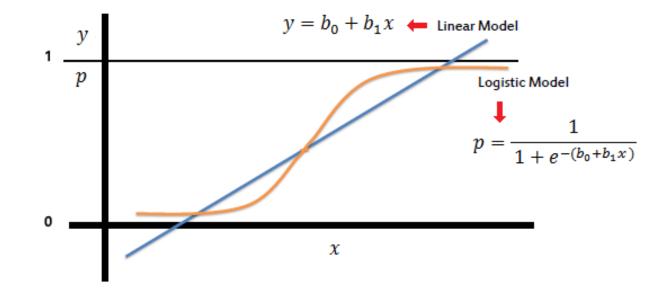

Overview: Results

AUC of **Horizontal** Movement prediction: 92% AUC of **Vertical** Movement prediction: 74%

Workflow

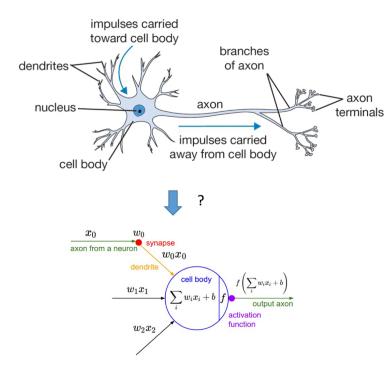
Preprocessing: Event-related potential

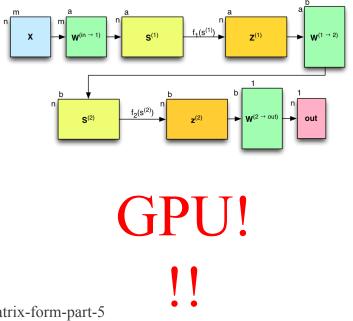
- ERP = The brain response correspond to the event
- The EEG reflects tons of ongoing brain processes
- Any processes other than we want are **noise**
- To maximize the signal-to-noise ratio (SNR)
- Assume X = DA + N.
- Find the $\hat{A} = \arg \min_{A} ||X DA||_2^2$ where X = recorded EEG, A = ERP, D is related to event and N = Noise



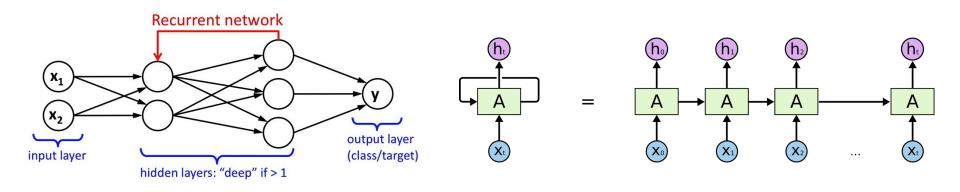
Preprocessing: Filter Bank

Psychologic Physiologic		Changes in EEG Waves		
Concentrated		Suppression of the alpha wave		
Deep sleep		Predominance of the delta wave		
Vigilant		Generation of beta wave		
Recognition o	f sensory stimuli	Changes in gamma wave		
Low freq.	Delta wave	why with the in the is a		
	Alpha wave			
High freq.	Beta wave	burger and the second of the s		


Classifier: Logistic Regression


Reference: http://www.saedsayad.com/logistic_regression.htm

Classifier: Neural Network


Represented by matrices (multiplication)

TENNESSEE KNOXVILLE

Reference: CUHK IERG4160 (2017 Spring) http://briandolhansky.com/blog/2014/10/30/artificial-neural-networks-matrix-form-part-5

Another NN: Recurrent Neural Network

Refrence: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gradient Boosting

 $\label{eq:Gradient Boosting} \textbf{Gradient Boosting} = \textbf{Gradient Descent} + \textbf{Boosting}$

Adaboost

$$H(x) = \sum_t \rho_t h_t(x)$$

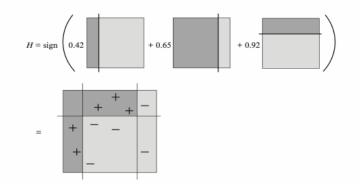


Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

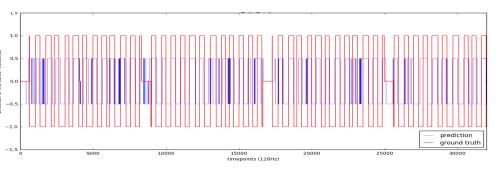
Experimental Setup

• 12 Subjects' data were used, each of them has 5 trials about horizontal / vertical movements


	1st, 2nd, 3rd trials	4th trial	5th trials
Basic Models	Train Data	Validation	Validation
Refinement	-	2-fold validation	2-fold validation

The computation were run on XSEDE-Bridges 16 Cores + GPU (P100)

Results: Horizontal (Basic Models)


Unnamed: 0	AUC	Time
FBL	0.842590	181.972919
NN_32	0.835308	98.896181
NN_64	0.834818	90.139172
RNN_FB_delay4000	0.834604	312.028854
NN_128	0.834080	89.993732
NN_16	0.830884	130.502847
NN_256	0.828083	89.038822
NN_512	0.823449	91.755990
FBLCR_256	0.791780	167.238749
FBLCR_All	0.791061	172.708039
FBLC_256pts_alex2	0.752158	177.197120
CovsERP_Dist_poly	0.680992	612.404152
CovsERP_Dist	0.676593	118.485019
CovsAlex_7-30Hz_500pts_poly	0.674321	653.031422
CovsAlex_7-30Hz_500pts	0.664084	102.315805
CovAlex_All	0.657394	1083.693734
CovAlex_old_All	0.656820	1032.833952
CovsRafal_35Hz_256pts	0.654137	68.562238
CovsAlex_35Hz_250pts_poly	0.653636	1099.318186
CovsRafal_35Hz_500pts	0.651988	77.257092
CovsAlex_35Hz_500pts_poly	0.650604	964.940802
CovsAlex_1-15Hz_500pts_poly	0.650267	1216.758358
CovsAlex_20-35Hz_500pts_poly	0.644330	357.597696
CovsAlex_35Hz_250pts	0.640570	117.760372
CovsAlex_1-15Hz_500pts	0.632530	116.162412
CovsAlex_20-35Hz_500pts	0.622492	89.197422
CovsAlex_35Hz_500pts	0.622180	120.631374
FBL_delay100_skip20	0.588445	773.620677

Results: Horizontal (Refine)

	Unnamed: 0	AUC	Time	
0	xgb_longshort_bags_model	0.918678	219.687598	
0	xgb_bags	0.917246	44.505239	
0	xgb_noCovs	0.914032	18.641206	
0	xgb_bags_model	0.913633	249.341032	
0	RNN_256_delay4000_allModels_ADAM_bags_model	0.912653	2185.129013	
0	RNN_256PR_delay4000_allModels_ADAM_bags_model	0.912417	2195.700831	
0	RNN_256_delay2000_allModels_ADAM_bags_model	0.911047	2175.592875	
0	xgb_bags_delay	0.911045	448.812827	
0	RNN_256_delay4000_allModels_ADAM_bags	0.909810	2146.428794	
0	RNN_256_customDelay_allModels_ADAM_bags_model	0.908812	1048.715023	
0	xgb_longshort	0.907385	25.947971	ities
0	RNN_256_delay4000_allModels_ADAM_2layers_bags	0.907231	2158.033413	ar veloc
0	RNN_256_delay4000_FBLCRAll_ADAM	0.906253	184.589281	P CLIPSO
0	xgb_short	0.905916	23.417831	n of th
0	xgb_NN_FBL_bags_model	0.905631	113.996028	lirectio
0	RNN_256PR_delay4000_allModels_ADAM	0.905216	151.410950	
0	RNN_256_delay4000_allModels_ADAM_2layers	0.904371	164.942369	
0	RNN_256_delay4000_allModels_ADAM	0.903501	166.779580	
0	RNN_256_customDelay_allModels_ADAM	0.903034	75.793599	
0	xgb_subjects_sub	0.900531	25.345117	
0	xgb_NN_FBL	0.899805	8.536120	
0	xgb_onlyNN	0.892104	5.638924	
0	xgb_NN_FBL_bags	0.879245	23.174044	
0	RNN_256_delay4000	0.842177	3852.266719	
0	RNN_256_delay4000_FBLCA	0.836923	3890.202207	
0	xab onlvCovs	0.691169	20.653086	

Result: Vertical

	Unnamed: 0	AUC	Time	
)	CovsERP_Dist_poly	0.669644	487.399618	
)	CovsAlex_1-15Hz_500pts_poly	0.661633	724.974220	
)	RNN FB delay4000	0.660657	320.613438	
)	CovsAlex_1-15Hz_500pts	0.652165	225.277494	
)	CovsERP_Dist	0.650005	260.915219	
)	 CovsRafal_35Hz_256pts	0.646928	280.179943	
)	CovsAlex_20-35Hz_500pts_poly	0.646516	217.049680	
)	CovsAlex_7-30Hz_500pts_poly	0.644043	252.706750	
)	CovsRafal_35Hz_500pts	0.643119	275.645791	
)	CovsAlex_35Hz_500pts_poly	0.642127	699.299518	
)	FBLCR_All	0.638896	203.199322	
)	FBLCR_256	0.638601	178.786031	
)	CovsAlex_35Hz_250pts_poly	0.637163	860.897156	
)	NN_32	0.633956	107.518679	
)	NN_256	0.633861	92.566718	
)	CovsAlex_35Hz_250pts	0.633359	241.608241	
)	NN_512	0.631083	91.869646	
)	NN_64	0.630556	92.625652	
)	NN_16	0.630323	130.269898	
)	FBL	0.629485	194.645135	
)	NN_128	0.629336	91.739161	
)	CovAlex_All	0.626050	908.639449	
)	FBLC_256pts_alex2	0.625642	211.073688	
)	CovAlex_old_All	0.625593	889.716575	
)	CovsAlex_35Hz_500pts	0.624196	245.715095	
)	CovsAlex_7-30Hz_500pts	0.623102	208.905571	
)	CovsAlex_20-35Hz_500pts	0.604611	214.996715	
)	FBL_delay100_skip20	0.598033	1367.602588	

Unnamed: 0	AUC	Time
xgb_NN_FBL_bags_model	0.723458	131.488834
xgb_noCovs	0.714594	18.844718
xgb_bags_delay	0.707688	450.176472
xgb_longshort_bags_model	0.705651	218.316631
xgb_longshort	0.702168	25.889817
xgb_short	0.698705	23.303805
RNN_256_delay4000_allModels_ADAM_2layers	0.697745	171.210338
xgb_subjects_sub	0.696464	25.715433
RNN_256_delay4000_allModels_ADAM_bags	0.696216	2190.634941
RNN_256PR_delay4000_allModels_ADAM	0.696046	157.041731
RNN_256_delay4000_allModels_ADAM_bags_model	0.695849	2259.061960
RNN_256_delay4000_FBLCRAll_ADAM	0.695055	190.626488
RNN_256PR_delay4000_allModels_ADAM_bags_model	0.694616	2264.915453
xgb_onlyNN	0.694058	5.518596
xgb_bags	0.693365	45.268314
RNN_256_customDelay_allModels_ADAM	0.693143	79.883520
RNN_256_delay4000_allModels_ADAM	0.693085	171.961007
xgb_NN_FBL	0.692863	8.661242
RNN_256_delay4000_allModels_ADAM_2layers_bags	0.690987	2196.073289
RNN_256_delay2000_allModels_ADAM_bags_model	0.689881	2255.313206
RNN_256_customDelay_allModels_ADAM_bags_model	0.689247	1094.970984
xgb_onlyCovs	0.675803	20.528981
RNN_256_delay4000_FBLCA	0.667560	4026.971066
RNN_256_delay4000	0.666194	4048.248218
xgb_NN_FBL_bags	0.665108	23.830886

Next Step:

- Next Step
 - Convert everything to C to accelerate computation
- Goal
 - Predict the cursor direction in real-time

Reference

Github: alexandrebarachant/Grasp-and-lift-EEG-challenge https://github.com/alexandrebarachant/Grasp-and-lift-EEG-challenge

