

High Performance Traffic Assignment Based on Variational Inequal

XIAO Yujie, SHI Zhenmei Mentor: Dr. LIU Cheng, Dr. WONG Kwai

CityU 香港城市大學 City University of Hong Kong

Agenda

- > Introduction
 - Traffic Assignment Problem
 - Variational Inequality
- ≻ STA

≻ DTA

Traffic Assignment

Traffic assignment is a kernel component in transportation planning and real-time applications in optimal routing, signal control, and traffic prediction in traffic networks.

Introduction

Node

Link

Origin-Destination Pair

Figure 1.5: An illustration of the traffic equilibrium problem.

Time Cost

Optimization

- System equilibrium
- <u>User equilibrium</u>

Time Cost Function

 $time = free flow time * (1 + B * (flow/capacity)^{Power})$

Given:

1. A graph representation of the urban transportation network

- 2. The associated link performance functions
- 3. An origin-destination matrix

Find the flow (and travel time) on each of the network links, such that the network satisfies user-equilibrium (UE) principle.

Variational Inequality

✤ What?

 \succ Definition

$(\underline{y}-\underline{x})^{\mathsf{T}}\mathsf{F}(\underline{x}) \geq 0, \ \forall \ \underline{y} \in \mathsf{K}$

≻Graphically

Variational Inequality

✤ Category

$\mathrm{VI}~(K,q,M)$				$\mathrm{VI}\;(K,q,M)$
↑				\downarrow
VI (K, F)	\Rightarrow	linearly constrained VI	\Rightarrow	AVI (K, q, M)
\Downarrow		\uparrow		\$
$\operatorname{CP}\ (K,F)$	\Rightarrow	MiCP (F)	\Rightarrow	MLCP
		\Downarrow		\downarrow
		NCP (F)	\Rightarrow	LCP (q, M) .

Variational Inequality

✤ Why?

> Intuitive: Either scenorio A or scenorio B

 \succ closely related to equilibrium

✤ Application

➤ Nash Equilibrium Problem

Economic Equilibrium Problem

Pricing America Options

Category

> Static Traffic Assignment

> Dynamic Traffic Assignment (continuous or discrete)

STA

Step 0: Initialization. Perform all-or-nothing assignment based on $t_a = t_a(0), \forall a$. This yields $\{x_a^1\}$. Set counter n := 1.

Step 1: Update. Set $t_a^n = t_a(x_a^n)$, $\forall a$.

Frank

Wolfe

Algorithm

Step 2: Direction finding. Perform all-or-nothing assignment based on $\{t_a^n\}$. This yields a set of (auxiliary) flows $\{y_a^n\}$.

Step 3: Line search. Find α_n that solves

$$\min_{0 \leq \alpha \leq 1} \sum_{a} \int_{0}^{x_{a}^{n} + \alpha(y_{a}^{n} - x_{a}^{n})} t_{a}(\omega) d\omega$$

Step 4: Move. Set
$$x_a^{n+1} = x_a^n + \alpha_n(y_a^n - x_a^n)$$
, $\forall a$.

Step 5: Convergence test. If a convergence criterion is met, stop (the current solution, $\{x_a^{n+1}\}$, is the set of equilibrium link flows); otherwise, set n := n + 1 and go to step 1.

Nonlinear Complementarity Problem (NCP)

1.1.5 Definition. Given a mapping $F : \mathbb{R}^n_+ \to \mathbb{R}^n$, the NCP (F) is to find a vector $x \in \mathbb{R}^n$ satisfying

$$0 \le x \perp F(x) \ge 0.$$
 (1.1.5)

$$\sum_{k\in R_w} f^w_k = q_w,
onumber \ C^w_k = \sum_{lpha\in A} \delta^w_{lpha k} t_lpha(x),
onumber \ x_lpha = \sum_{w\in W} \sum_{k\in R_w} \delta^w_{lpha k} f^w_k,
onumber \ u_w \ge 0.$$

Traffic Problem complementarity problem

$$egin{aligned} 0 &\leq C_p(h) - u_w \perp h_p \geq 0, & orall w \in \mathcal{W} ext{ and } p \in \mathcal{P}_w; \ & \sum_{p \in \mathcal{P}_w} h_p = d_w(u), & orall w \in \mathcal{W}, \ & u_w \geq 0, \quad w \in \mathcal{W}. \ & \mathbf{F}(h,u) \equiv egin{pmatrix} C(h) - \Omega^T u \ \Omega h - d(u) \end{pmatrix}, \end{aligned}$$

Nonlinear Joint Institute for Computational Sciences

Limitation

 \succ Unrealistic to find all

path for a big graph

Joint Institute for Computational Scier Computational

Solution

> Find 7 nonsimilar path for each OD-pair to reduce Matrix size

➤ Use Shortest Path Algorethm

➤ Get approximate Optimization

Algorithm

Step 1: Use One to All shortest path algorithm to find 7 paths for each OD pair. Here the solver uses nvGRAPH package in CUDA library which runs on GPU.

nvgraphStatus_t nvgraphSssp (nvgraphHandle_t,const nvgraphGraphDescr_t , const size_t, int *, const size_t);

Algorithm

Step 2: Convert all data in to NCP formulation in Siconos, which is a nonsmooth numerical simulation package

$$\mathbf{A}_{sparse} = \begin{bmatrix} 0 & A_{12} & A_{13} & 0 & 0 \\ 0 & A_{22} & 0 & 0 & 0 \\ 0 & 0 & A_{33} & 0 & 0 \\ 0 & 0 & A_{43} & A_{44} & 0 \\ 0 & A_{52} & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Algorithm

Step 3: Use NCP FBLSA Algorithm to solve the problem with given error bound. Here the solver uses Siconos and MUMPS library, which is a parallel sparse direct solver using MPI.

info = ncp_driver(problem, z, F, &options);

Sample input

<links></links>	>										
~ Init	node	Term node	Capacity	Length	Free Flo	ow Time B	Power	Speed lim	it 1	Coll	Туре
1	2	25900.200640	6.000000	6.000000	0.150000	4.000000	0.00000	0.000000	1		
1	3	23403.473190	4.000000	4.000000	0.150000	4.000000	0.00000	0.000000	1		
2	1	25900.200640	6.000000	6.000000	0.150000	4.000000	0.00000	0.000000	1		
2	6	4958.180928	5.000000	5.000000	0.150000	4.000000	0.00000	0.000000	1		
3	1	23403.473190	4.000000	4.000000	0.150000	4.000000	0.00000	0.000000	1		
3	4	17110.523720	4.000000	4.000000	0.150000	4.000000	0.00000	0.000000	1		
3	12	23403.473190	4.000000	4.000000	0.150000	4.000000	0.00000	0.000000	1		
4	3	17110.523720	4.000000	4.000000	0.150000	4.000000	0.00000	0.000000	1		
4	5	17782.794100	2.000000	2.000000	0.150000	4.000000	0.00000	0.000000	1		
4	11	4908.826730	6.000000	6.000000	0.150000	4.000000	0.00000	0.00000	1		
5	4	17782.794100	2.000000	2.000000	0.150000	4.000000	0.00000	0.000000	1		
5	6	4947.995469	4.000000	4.000000	0.150000	4.000000	0.00000	0.00000	1		
5	9	10000.000000	5.000000	5.000000	0.150000	4.000000	0.00000	0.000000	1		
6	2	4958.180928	5.000000	5.000000	0.150000	4.000000	0.00000	0.000000	1		
6	5	4947.995469	4.000000	4.000000	0.150000	4.000000	0.00000	0.000000	1		
6	8	4898.587646	2.000000	2.000000	0.150000	4.000000	0.00000	0.000000	1		
7	8	7841.811310	3.000000	3.000000	0.150000	4.000000	0.00000	0.000000	1		
7	18	23403.473190	2.000000	2.000000	0.150000	4.000000	0.00000	0.000000	1		
8	6	4898.587646	2.000000	2.000000	0.150000	4.000000	0.00000	0.000000	1		
8	7	7841.811310	3.000000	3.000000	0.150000	4.000000	0.00000	0.000000	1		
8	9	5050.193156	10.000000	10.00000	0 0.15000	4.00000	0.0000	0.00000	0 1		
8	16	5045.822583	5.000000	5.000000	0.150000	4.000000	0.00000	0.000000	1		
Origin	n 1										
1	:	0.0;	2: 10	0.0;	3:	L00.0;	4 :	500.0;	5:	20	0.0;
6	:	300.0;	7: 50	0.0;	8: 8	300.0;	9:	500.0;	10 :	130	0.0;
11	:	500.0; 1	12 : 20	0.0;	13 :	500.0;	14 :	300.0;	15 :	50	0.0;
16	:	500.0; 1	17: 40	, 0.0;	18 :	, 100.0;	19 :	300.0;	20 :	30	0.0;
21	:	100.0; 2	22 : 40	0.0;	23 : 3	300.0;	24 :	100.0;			

Result with 4 OD Pair

oint Institute for computational Science

Computational Sciences

OFF

Result with 24 OD Pair

Result

The accuracy varies with path number for each OD pair

Analysis - Compared with Frank Wolfe Algorithm

NCP:

- 1. Dominant cost: Matrix solver
- 2. Approximate optimize
- 3. A little faster when graph is big and with a few OD pair (Matrix size is OD pair number + path number)

FW:

- Dominant cost: shortest path algorithm
- 2. Real Optimize
- 3. Faster when OD pair is more

Conclusion

- 1. Frank Wolfe Algorithm is still better than NCP Algorithm in general.
- In special cases, when graph is big and number of OD Pair is little NCP Algorithm is faster than Frank Wolfe Algorithm.
 - 3. When select 7 paths for each OD pair in NCP algorithm, the result accuracy can reach 95%.

Future Work

Do comprehensive tests

tional Sciences Computational

Sciences

DTA

Mathematical Formulation

- > Variational Inequality formulation:
 - Nash equilibrium nature

$$h_{p}(t) > 0 \implies C_{p}(t, h) = \mu_{kl} \quad \forall_{\nu}(t)$$
$$C_{p}(t, h) \ge \mu_{kl} \quad \forall_{\nu}(t).$$

$$\begin{cases} \text{find } h^* \in \Lambda \text{ such that} \\ \sum_{p \in \mathcal{P}} \int_{t_0}^{t_f} \Psi_p(t, h^*) \Big(h_p - h_p^* \Big) dt \ge 0 \\ \forall h \in \Lambda \end{cases} \\ PVI(\Psi, \Lambda, [t_0, t_f])$$

Mathematical Formulation

> Dynamic Network Loading:

• Given h, return path delay operator

• Approximated by ODE systems

$$\begin{split} \frac{dx_{a_i}^p(t)}{dt} &= g_{a_{i-1}}^p(t) - g_{a_i}^p(t) \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ x_{a_i}^p(0) &= x_{a_i}^{p,0} \in \mathfrak{R}_+^1 \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ h_p^{\tau,k}(t) &= g_{a_1}(t + D_{a_1}[x_{a_1}(t)]) \left(1 + D_{a_1}'[x_{a_1}(t)]\dot{x}_{a_1}\right) \\ g_{a_{i-1}}^p(t) &= g_{a_i}^p(t + D_{a_i}[x_{a_i}(t)]) \left(1 + D_{a_i}'[x_{a_i}(t)]\dot{x}_{a_i}(t)\right) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \end{split}$$

$$\begin{split} \frac{dx_{a_1}^p(t)}{dt} &= h_p^{\tau,k}(t) - g_{a_1}^p(t) \quad \forall p \in \mathcal{P} \\ \frac{dx_{a_i}^p(t)}{dt} &= g_{a_{i-1}}^p(t) - g_{a_i}^p(t) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \\ \frac{dg_{a_i}^p(t)}{dt} &= r_{a_i}^p(t) \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ \frac{dr_{a_1}^p(t)}{dt} &= R_{a_1}^p(x, g, r, h^{\tau,k}) \quad \forall p \in \mathcal{P} \\ \frac{dr_{a_i}^p(t)}{dt} &= R_{a_i}^p(x, g, r) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \\ x_{a_i}^p((\tau - 1) \cdot \Delta) &= x_{a_i}^{p,0} \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ g_{a_i}^p((\tau - 1) \cdot \Delta) &= 0 \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ r_{a_i}^p((\tau - 1) \cdot \Delta) &= 0 \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \end{split}$$

DTA: Algorithm

$> ODE = make_ODE(h)$

\succ x = solution(ODE)

$$\begin{split} \frac{dx_{a_{1}}^{p}(t)}{dt} &= h_{p}^{\tau,k}(t) - g_{a_{1}}^{p}(t) \quad \forall p \in \mathcal{P} \\ \frac{dx_{a_{i}}^{p}(t)}{dt} &= g_{a_{i-1}}^{p}(t) - g_{a_{i}}^{p}(t) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \\ \frac{dg_{a_{i}}^{p}(t)}{dt} &= r_{a_{i}}^{p}(t) \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ \frac{dr_{a_{1}}^{p}(t)}{dt} &= R_{a_{1}}^{p}(x, g, r, h^{\tau,k}) \quad \forall p \in \mathcal{P} \\ \frac{dr_{a_{i}}^{p}(t)}{dt} &= R_{a_{i}}^{p}(x, g, r) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \\ x_{a_{i}}^{p}((\tau - 1) \cdot \Delta) &= x_{a_{i}}^{p,0} \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ g_{a_{i}}^{p}((\tau - 1) \cdot \Delta) &= 0 \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ r_{a_{i}}^{p}((\tau - 1) \cdot \Delta) &= 0 \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \end{split}$$

Joint Institute for Computational Scie

OR

DTA: Algorithm

- > Dp = getDp(x)
 - x: arc volume
 - Dp: traversal time
 - Phi: cost function

$$\begin{split} D_p &= \sum_{i=1}^{m(p)} [\tau_{a_i}^p(t) - \tau_{a_{i-1}}^p(t)] = \tau_{a_{m(p)}}^p(t) - t \\ \tau_{a_1}^p(t) &= t + D_{a_1}[x_{a_1}(t)] \\ \tau_{a_i}^p(t) &= \tau_{a_{i-1}}^p(t) + D_{a_i}[x_{a_i}(\tau_{a_{i-1}}^p(t))] \\ D(x) &= \alpha * x + \beta \end{split}$$

$$\begin{split} \Phi_p(t) &= D_p(t) + F[D_p(t) + t - T_A] \\ F(D_p(t) + t - T_A) &= 0.5 * (D_p(t) + t - T_A)^2 \end{split}$$

$$>$$
 Phi = getPhi(Dp)

• F: penalty function

DTA: Algorithm

> v = solution(Phi)

$$\sum_{p \in P_{ij}} \int_{t0}^{tf} [h_p^k(t) - \alpha \Phi(t, h_p^k) + v_{ij}]_+ = Q_{ij}$$

> h_k+1 = iteration(h_k)

$$h_{p}^{k+1} = [h_{p}^{k}(t) - \alpha \Phi(t, h_{p}^{k}) + v_{ij}]_{+}$$

Result: Sioxfalls network

Result: Departure rate and Optimum cost

Future Work

- > High speed
- ➤ Large practical case

END

