
High Performance Traffic
Assignment Based on
Variational Inequality

XIAO Yujie, SHI Zhenmei
Mentor: Dr. LIU Cheng, Dr. WONG Kwai

Agenda

➢ Introduction

○ Traffic Assignment Problem

○ Variational Inequality

➢ STA

➢ DTA

Traffic Assignment

Traffic assignment is a kernel component in
transportation planning and real-time applications in
optimal routing, signal control, and traffic prediction

in traffic networks.

Introduction

Traffic Assignment Problem
Node

Link

Origin-Destination Pair

Time Cost

Traffic Assignment Problem
Optimization

● System equilibrium

● User equilibrium

Time Cost Function

Traffic Assignment Problem
Given:

1. A graph representation of the urban transportation network

2. The associated link performance functions

3. An origin-destination matrix

Find the flow (and travel time) on each of the network links, such that the
network satisfies user-equilibrium （UE） principle.

Variational Inequality

❖What?

➢ Definition

(y−x)TF(x) ≥ 0, ∀y ∈ K

➢Graphically

Variational Inequality

❖ Category

Variational Inequality

❖Why?

➢ Intuitive: Either scenorio A or scenorio B

➢ closely related to equilibrium

❖ Application

➢ Nash Equilibrium Problem

➢ Economic Equilibrium Problem

➢ Pricing America Options

Traffic Assignment Problem

❖ Category

➢ Static Traffic Assignment

➢ Dynamic Traffic Assignment (continuous or discrete)

STA

VI on Static Traffic Assignment Problem (STA)

Frank

Wolfe

Algorithm

VI on Static Traffic Assignment Problem (STA)

Nonlinear Complementarity Problem (NCP)

Traffic Problem Nonlinear
complementarity problem

VI on Static Traffic Assignment Problem (STA)

VI on Static Traffic Assignment Problem (STA)

❖ Limitation

➢ Unrealistic to find all

path for a big graph

VI on Static Traffic Assignment Problem (STA)

❖ Solution

➢ Find 7 nonsimilar path for each OD-pair to reduce Matrix size

➢ Use Shortest Path Algorethm

➢ Get approximate Optimization

Algorithm
Step 1: Use One to All shortest path algorithm to find 7 paths for each OD
pair. Here the solver uses nvGRAPH package in CUDA library which runs on
GPU.

nvgraphStatus_t nvgraphSssp (nvgraphHandle_t,const
nvgraphGraphDescr_t , const size_t, const
int *, const size_t);

Algorithm
Step 2: Convert all data in to NCP formulation in Siconos, which is a non-
smooth numerical simulation package

Algorithm
Step 3: Use NCP FBLSA Algorithm to solve the problem with given error
bound. Here the solver uses Siconos and MUMPS library, which is a parallel
sparse direct solver using MPI.

info = ncp_driver(problem, z, F, &options);

Sample input

Result with 4 OD Pair

Result with 24 OD Pair

Result
The accuracy varies with path number for each OD pair

Analysis - Compared with Frank Wolfe Algorithm

NCP:

1. Dominant cost: Matrix solver

2. Approximate optimize

3. A little faster when graph is big

and with a few OD pair (Matrix

size is OD pair number + path

number)

FW:

1. Dominant cost: shortest path

algorithm

2. Real Optimize

3. Faster when OD pair is more

Conclusion

1. Frank Wolfe Algorithm is still better than NCP Algorithm in general.

2. In special cases, when graph is big and number of OD - Pair is little NCP

Algorithm is faster than Frank Wolfe Algorithm.

3.When select 7 paths for each OD - pair in NCP algorithm, the result

accuracy can reach 95%.

Future Work

❖ Do comprehensive tests

❖ Use cuSPARSE direct calculate Sparse Matrix

DTA

Mathematical Formulation

➢ Variational Inequality formulation:

○ Nash equilibrium nature

Mathematical Formulation

➢ Dynamic Network Loading:

○ Given h, return path delay operator

○ Approximated by ODE systems

DTA: Algorithm

➢ Overview
Input hk for all p

while (convergence
condition == true)

ODE =
makeOde(hk)

hk+1 = iteration(Phi,v) for all p

x = solution(ODE)

Phi = getPhi(x)

v = getV(Phi), for all p

...

...

...

Output hk+1 for all p

...

...

...

DTA: Algorithm

➢ ODE = make_ODE(h)

➢ x = solution(ODE)

DTA: Algorithm

➢ Dp = getDp(x)

○ x: arc volume

○ Dp: traversal time

○ Phi: cost function

➢ Phi = getPhi(Dp)

○ F: penalty function

DTA: Algorithm

➢ v = solution(Phi)

➢ h_k+1 = iteration(h_k)

Result: Sioxfalls network

Result: Departure rate and Optimum cost

Future Work

➢ High speed

➢ Large practical case

END

