### High Performance Traffic Assignment Based on Variational Inequality

 $\bullet \bullet \bullet$ 

XIAO Yujie, SHI Zhenmei Mentor: Dr. LIU Cheng, Dr. WONG Kwai



### Agenda

Introduction

- Traffic Assignment Problem
- Variational Inequality

Progress

Objective

- GPU Implementation
- DTA by dVI





## Introduction



#### Traffic Assignment Problem

Node

Link

Origin-Destination Pair





Figure 1.5: An illustration of the traffic equilibrium problem.

Time Cost



#### Traffic Assignment Problem

Optimization

- System equilibrium
- <u>User equilibrium</u>



#### Time Cost Function

$$t_a = t_a^0 (1 + \frac{x_a}{k_a})^4, \forall a \in A.$$

Joint Institute for Computational Science



#### Variational Inequality

- ✤ What?
  - ➤ definition

#### $(y-x)^{\mathsf{T}}\mathsf{F}(x) \ge 0, \ \forall y \in \mathsf{K}$

> Graphically



oint Institute for computational Scienc



#### Variational Inequality

Category

VI (K, q, M)VI (K, q, M)↓ ↑ VI (K, F)linearly constrained VI  $\Rightarrow$  AVI (K, q, M) $\Rightarrow$ ↓ Î 1 CP(K,F)MiCP (F)**MLCP**  $\Rightarrow$  $\Rightarrow$ 1 1 LCP (q, M). NCP (F) $\Rightarrow$ 



### Variational Inequality

- ✤ Why?
  - Intuitive: Either scenorio A or scenorio B
  - closely related to equilibrium
- Application
  - ➢ Nash Equilibrium Problem
  - ≻ Economic Equilibrium Problem
  - Pricing America Options
  - Frictional Contact Problem
  - ➢ Traffic Equilibrium Problem



# Progress



#### Traffic Assignment Problem

- Category
  - Static Traffic Assignment
  - Dynamic Traffic Assignment (continuous or discrete)



#### VI on Static Traffic Assignment Problem (STA)

$$\sum_{k\in R_w} f^w_k = q_w, 
onumber \ C^w_k = \sum_{a\in A} \delta^w_{ak} t_a(x), 
onumber \ x_a = \sum_{w\in W} \sum_{k\in R_w} \delta^w_{ak} f^w_k, 
onumber \ u_w \ge 0.$$

Traffic Problem

$$0 \le f \perp C(\Delta f) - \Lambda^{ op} u \ge 0$$
  
 $\Lambda f - q = 0$   
 $u \ge 0$ 

$$F(f, u) = \left( egin{array}{c} C(\Delta f) - \Lambda^{ op} u \ \Lambda f - q \end{array} 
ight)$$

Nonlinear complementarity problem

Computational Science

Computationa Sciences

### VI on Static Traffic Assignment Problem (STA)

- ✤ Limitation
  - ➢ Unrealistic to find all path
- Solution
  - ➤ Find 7 nonsimilar path for each OD-pair to reduce Matrix size
  - Use Shortest Path Algorethm
  - ➢ Get approximate Optimization



#### **Sequential Code**



loint Institute for Computational Sciences ORN

Computational Sciences

#### **Sequential Code**

#### Sample Input

| <links:< th=""><th>&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></links:<> | >    |              |           |          |           |            |                |           |         |           |
|-------------------------------------------------------------------------------------------------------------------------|------|--------------|-----------|----------|-----------|------------|----------------|-----------|---------|-----------|
| ~ Init                                                                                                                  | node | Term node    | Capacity  | Length   | Free Flo  | w Time   B | Power          | Speed lim | it   To | ll   Type |
| 1                                                                                                                       | 2    | 25900.200640 | 6.000000  | 6.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 1                                                                                                                       | 3    | 23403.473190 | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 2                                                                                                                       | 1    | 25900.200640 | 6.000000  | 6.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 2                                                                                                                       | 6    | 4958.180928  | 5.000000  | 5.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 3                                                                                                                       | 1    | 23403.473190 | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 3                                                                                                                       | 4    | 17110.523720 | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.000000       | 0.00000   | 1       |           |
| 3                                                                                                                       | 12   | 23403.473190 | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.00000        | 0.000000  | 1       |           |
| 4                                                                                                                       | 3    | 17110.523720 | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 4                                                                                                                       | 5    | 17782.794100 | 2.000000  | 2.000000 | 0.150000  | 4.000000   | 0.000000       | 0.00000   | 1       |           |
| 4                                                                                                                       | 11   | 4908.826730  | 6.000000  | 6.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 5                                                                                                                       | 4    | 17782.794100 | 2.000000  | 2.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 5                                                                                                                       | 6    | 4947.995469  | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 5                                                                                                                       | 9    | 10000.000000 | 5.000000  | 5.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 6                                                                                                                       | 2    | 4958.180928  | 5.000000  | 5.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 6                                                                                                                       | 5    | 4947.995469  | 4.000000  | 4.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 6                                                                                                                       | 8    | 4898.587646  | 2.000000  | 2.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 7                                                                                                                       | 8    | 7841.811310  | 3.000000  | 3.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 7                                                                                                                       | 18   | 23403.473190 | 2.000000  | 2.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 8                                                                                                                       | 6    | 4898.587646  | 2.000000  | 2.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 8                                                                                                                       | 7    | 7841.811310  | 3.000000  | 3.000000 | 0.150000  | 4.000000   | 0.000000       | 0.000000  | 1       |           |
| 8                                                                                                                       | 9    | 5050.193156  | 10.000000 | 10.00000 | 0 0.15000 | 0 4.00000  | 0.00000        | 0.00000   | 0 1     |           |
| 8                                                                                                                       | 16   | 5045.822583  | 5.000000  | 5.000000 | 0.150000  | 4.000000   | 0.00000        | 0.000000  | 1       |           |
| Origin                                                                                                                  | n 1  |              |           |          |           |            |                |           |         |           |
| 1                                                                                                                       | :    | 0.0;         | 2: 10     | 0.0;     | 3: 1      | .00.0;     | 4 : 5          | 500.0;    | 5 :     | 200.0;    |
| 6                                                                                                                       | :    | 300.0;       | 7: 50     | 0.0;     | 8: 8      | 100.0;     | 9: 5           | 500.0;    | 10 :    | 1300.0;   |
| 11                                                                                                                      | :    | 500.0;       | 12 : 20   | 0.0;     | 13 : 5    | 00.0;      | 14 : 3         | 300.0;    | 15 :    | 500.0;    |
| 16                                                                                                                      | :    | 500.0:       | 17: 40    | .0.0     | 18: 1     | 00.0;      | 19: 3          | 300.0;    | 20 :    | 300.0;    |
| 21                                                                                                                      |      | 100 0:       | 22 . 41   | 0.0:     | 23        | 00 0:      | 24 • 1         | 00 0:     |         |           |
| 21                                                                                                                      |      | 100.0,       |           | ,        |           |            | 4 <b>7</b> • 1 | ,         |         |           |

#### Output



### VI on Dynamic Traffic Assignment Problem (DTA)

Solve for dynamic cost function

 $\mathbf{x}_{a_i}^p((\tau-1)\cdot\varDelta) = \mathbf{x}_{a_i}^{p,0} \quad \forall p \in \mathcal{P}, i \in [1, m(p)]$ 

 $g^p_{a_i}((\tau-1)\cdot\varDelta) = 0 \quad \forall p \in \mathcal{P}, i \in [1, m(p)]$ 

 $r^p_{a_i}((\tau-1)\cdot\varDelta)=0 \quad \forall p\in\mathcal{P}, i\in[1,m(p)]$ 

 $\begin{aligned} \frac{dx_{a_1}^p(t)}{dt} &= h_p^{\tau,k}(t) - g_{a_1}^p(t) \quad \forall p \in \mathcal{P} \\ \frac{dx_{a_i}^p(t)}{dt} &= g_{a_{i-1}}^p(t) - g_{a_i}^p(t) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \\ \frac{dg_{a_i}^p(t)}{dt} &= r_{a_i}^p(t) \quad \forall p \in \mathcal{P}, i \in [1, m(p)] \\ \frac{dr_{a_1}^p(t)}{dt} &= R_{a_1}^p(x, g, r, h^{\tau,k}) \quad \forall p \in \mathcal{P} \\ \frac{dr_{a_i}^p(t)}{dt} &= R_{a_i}^p(x, g, r) \quad \forall p \in \mathcal{P}, i \in [2, m(p)] \end{aligned}$ 

find 
$$h^* \in \Lambda$$
 such that  

$$\sum_{p \in \mathcal{P}} \int_{t_0}^{t_f} \Psi_p(t, h^*) \Big( h_p - h_p^* \Big) dt \ge 0$$
 $\forall h \in \Lambda$ 

Solve dVI

loint Institute for Computational Science



#### **DTA Cost function**





## Objective



#### **GPU Implementation**

- In Shortest Path Algorithm
  - ➢ Use GPU to Inplement
- In NCP Solver
  - ➢ Use GPU to direct calculate Sparse Matrix



#### DTA(dynamic traffic assignment)

find 
$$h^* \in \Lambda$$
 such that  

$$\sum_{p \in \mathcal{P}} \int_{t_0}^{t_f} \Psi_p(t, h^*) \Big( h_p - h_p^* \Big) dt \ge 0$$
 $\forall h \in \Lambda$ 





## END

