
www.9slide.vn

Implementing GNNs on MagmaDNN

Students: DINH Khanh Ly (City University of Hong Kong), Noah Dahle (University of Tennessee)
Mentors: Dr. Kwai Wong and Dr. Stan Tomov

Noah Dahle and DINH Khanh Ly would like to thank the National Science Foundation for their funding and support of the
NICS RECSEM program.

Acknowledgements

• The spectral method of graph convolutional networks utilizes the convolution
theorem by transferring the feature to the spectral domain, performing the
convolution, and transforming it back into the spatial domain.

• This is a flowchart of the order of the spectral method. When given the
adjacency matrix, feature vector, and arbitrary tensor of weights, this algorithm
will perform the convolution and send its new feature vector into another layer
or through to the loss function.

• The adjacency matrix goes through a series of transformations. The degree
matrix is calculated by created a calculating the degree of each node and
forming a diagonal matrix of those values.

• Then, the calculation 𝐿 = 𝐼	 − 𝐷!"/$𝐴𝐷!"/$ is used to calculate the Laplacian
matrix.

• From there, the Laplacian, feature, and weight matrices all get fed into the
ChebNet function which calculates the filter matrix g = ∑%&'(𝑤 𝑖 𝑇$ 𝐿 𝑥 .

• After this, the filter and feature matrix undergo a graph Fourier transform and
convolution: X = 𝑈)𝑥 ⊙ 𝑈)𝑔.

• Then, the inverse Fourier is calculated to get back into the spatial domain:
𝑋* = 𝑈𝑋

• Then, X’ is sent through the RELU activation function : 3𝑋 = RELU(X’).

• Finally, 3𝑋 is sent through the aggregation function, which updates each nodes
features based on its neighbors: F = AGG(3𝑋).

Implementation (Spectral GCN)

• Backpropagation is the next step. A rough gradient is written, but it is
not quite ready.

• Collect a dataset to test the efficiency of this model in comparison to a
mode made with PyTorch or Tensorflow.

Future Work (Spectral GCN)

This paper presents two approaches to developing graph neural
networks (GNNs) using MagmaDNN, a high-performance deep
learning library designed for heterogeneous computing
architectures. The approaches being implemented are the spectral
and spatial methods. Our approaches leverage the parallel
processing capabilities of MagmaDNN to enable efficient training
and inference of GNNs on large-scale graphs. Our results
demonstrate the potential of using MagmaDNN for developing
high-performance GNN models for a wide range of applications in
areas such as social network analysis, recommender systems, and
drug discovery.

Abstract

Introduction

Input
The task of the model is binary classification, which decides whether a link exists (positive link)
or does not exist (negative link) between two nodes. For that reason, the input is the original
graph with added negative links.

Implementation (Spatial GCN)

Future Work (Spatial GCN)

In
pu

t

En
co
de

r

N
od

e
Em

be
dd

in
gs

De
co
de

r

O
ut
pu

t

Encoder and Node Embeddings
The number of convolutional layers determines how far node representations are aggregated into
the source node, therefore, it is limited by the depth of the graph. This simple model has two
graph convolutional layer and an activation function between them. After processing the graph,
the encoder produces new node embeddings, which is later used by the decoder to make
predictions.

Graph Conv Graph Conv

Decoder
Using the result of the encoder, the decoder computes a dot product of the node representations
of two nodes on each edge. The new edge features is fed into an activation function to create a
scalar score on every edge that shows the probability of edge existence.

Node pair
multiplication Sigmoid Output

The Spatial GCN model uses a citation dataset named Cora, which consists of 2708 scientific
publications and 5429 links. Each publication in the dataset is described by a dictionary that
consists of 1433 unique words.

1. Implement the gradient function for the node pair multiplication
operation to complete the decoder.
2. Add the sigmoid function to finish and start training the model.
3. Compare the result of the model to the GCN models made with
PyTorch Geometric or DGL.

• Graph neural networks (GNNs) have been successfully applied to a
wide range of applications, including social network analysis,
recommendation systems, drug discovery, and traffic prediction, among
others. MagmaDNN is a high-performance deep learning library
designed for heterogeneous computing architectures, such as multi-core
CPUs, GPUs, and FPGAs.

• There are many implementations of GNNs: attention, convolution, lstm,
and more. The two models being developed in MagmaDNN are GCNs,
specifically the spatial and the spectral methods. While the spatial
method performs node representations aggregation using the mean rule,
the spectral method transforms the graph signal into the spectral domain,
performs convolution, then transforms it back into the graph domain.

• When performing these two methods, a graph, a feature matrix, an
adjacency matrix, and a degree matrix are needed.

x

-16

100

-250

w

1000

1000

1000

A 0 1 2

0 0 1 0

1 1 0 1

2 0 1 0

GNN Layer

F

.24 2.0 5.7

.34 2.8 8.0

.24 2.0 5.7

• The final equation for this model is
F = 𝑈[𝑈)𝑥	 ⊙ 𝑈) ∑%&'(𝑤 𝑖 ∗ 𝑇$ 𝐿 𝑥]

ChebNet

Fourier

Convolution

Inverse
Fourier

Activation

Aggregatio
n

Loss
Function

Laplacian

Degree

A

x

w

