
Parallel Discontinuous Galerkin Method

Yin Ki, Ng
The Chinese University of Hong Kong

7 August, 2015

1 Abstract

Discontinuous Galerkin Method(DG-FEM) is a class of Finite Element Method (FEM)
for finding approximation solutions to systems of differential equations that can be used to
simulate real life problems such as chemical transport phenomena.

In contrast to the standard FEM, DG-FEM allows discontinuity of the cell boundary
solutions (a cell refers to a finite sub-domain from a defined partition of the domain) (c.f.
[1]) which makes parallelization on this method flavourable.

This project is going to explore how we may construct the parallel code for 1D DG-FEM
that can be scaled in existing supercomputers. The Poisson’s equation is to be used as a
demonstration.

The mathematics behind the method is introduced in Section 2, where one can look into
the weak formulation with the bilinear function in the 1D case (Section 2.1, 2.2) and in
the 2D case (Section 2.3). An 1D step-by-step example is given in Section 3.

The design of parallelization in the 1D case can be found in Section 4. The motivation is
explained in Section 4.1 , and the parallel code structure, which takes the construction of
the linear system and the solver of the linear system into consideration, would be discussed
in Section 4.2 and 4.3 respectively.

Finally, future work is discussed in Section 5 and more result of the project work can be
found in the Appendix.

1

2 Understanding DG-FEM

Overview: In this section , we are going to understand the mathematics behind DG-FEM
with a start-off at FEM. ”Jump condition” is the major component that makes DG-FEM
stand out from FEM.

2.1 1-Dimensional DG-FEM

Consider the following 1D-problem, involving a differential equation with boundary con-
ditions:

{
−u′′ = f

u(a) = u(b) = 0
(1)

We wish to solve the unknown trial function u on the domain I = [a, b]. We may do
so by multiplying an arbitrary test function v defined such that it has the same boundary
condition v(a) = v(b) = 0 as u. We integrate over the domain to get

−
∫

(u′′ + f)v = −
∫
u′′v −

∫
fv = 0 (2)

Finite Element Method (FEM) Suppose we choose the test function v to be continuous
and differentiable everywhere on the domain. Integration by part on the first term gives

∫
u′v′ − u′v|ba −

∫
fv = 0

The central term disappears so we have

∫
u′v′ −

∫
fv = 0 (3)

(Notice that instead of having a twice derivative term in equation (2) (strong form),
now we get a first derivative term in equation (3) (weak form). Cut the domain I into
intervals I0 = [x0, x1], I1 = [x1, x2], · · · IN = [xN , xN+1], we then try to approximate u by
choosing our basis function (or shape function) θ = [θ1 ... θN]

Figure 2.1.a: Example of basis functions: Hat functions

2

that would satisfy partition of unity, and approximate u as a linear combination of θ:

uh =
i=N∑
i=1

αiθi ∈ Vh (4)

where Vh = span(θ). Moreover, we may also make the choice vh ∈ Vh, that is, make uh and
vh both as a linear combination of θ. We choose vh = θv̄, where v̄ = [v̄1...v̄N]T are completely
arbitrary values at the discrete points. Substituting and rewriting equation (3) we get∫

u′hv
′
h −

∫
f vh = v̄T

(∫
(θT)′(θ)′α−

∫
θTf

)
= 0

which must hold for all arbitrary values of v̄, so∫
(θT)′(θ)′︸ ︷︷ ︸

S

α−
∫
θTf︸ ︷︷ ︸
r

= 0 (5)

where the stiffness matrix S is positive definite. Since we approximate the solution by
partitioning the domain into finite elements (intervals), this is called the Finite Element
Method (FEM) and we are left with solving the standard problem Sα = r.

Discontinuous Galerkin Method (DG-FEM) Suppose now we want our choice of the
test function v being discontinuous on the nodes x1, · · · , xN . Then we cannot integrate the
first term −

∫
u′′v in equation (2) since v is not differentiable on the whole domain.

On each node xj, let x−j represent the end of the left interval Ij−1, and x+
j represent the

start of the right interval Ij. Notice that we would have our function v look like this:

Figure 2.1.b: v being discontinuous on nodes

thus we are having two function v values, v(x−j) from Ij−1 and v(x+
j) from Ij, on each

node xj for j = 1...N . We may proceed by choosing a new basis function φ = [φ1 ... φM] that
is discontinuous at the nodes

Figure 2.1.c: Example of linear basis functions, discontinuous at nodes

3

and make our choice of the test function v to be φ. So now we can do integration by part
on each interval [xj, xj+1] and get:

−
∫
u′′v = −

j=N∑
j=0

∫ xj+1

xj

u′′v

=

j=N∑
j=0

(∫ xj+1

xj

u′v′ + u′(x+
j) v(x+

j)− u′(x−j+1) v(x−j+1)

)

=

j=N∑
j=0

∫ xj+1

xj

u′v′ + u′(x+
0) v(x+

0) +

((
−u′(x−1) v(x−1) + u′(x+

1) v(x+
1)
)

+ ...

+
(
−u′(x−N) v(x−N) + u′(x+

N) v(x+
N)
))
− u′(x−N+1) v(x−N+1)

=

j=N∑
j=0

∫ xj+1

xj

u′v′ + u′(x+
0) v(x+

0) +

j=N∑
j=1

[u′v]xj[u′v]xj[u′v]xj − u′(x−N+1) v(x−N+1) (6)

of which [u′v]xj[u′v]xj[u′v]xj = −u′(x−j) v(x−j) + u′(x+
j) v(x+

j) are called the jumps. Now we may define
u′(x−0) v(x−0) = u′(x+

N+1) v(x+
N+1) = 0 and after adding them to the equation, we have

−
∫
u′′v =

j=N∑
j=0

∫ xj+1

xj

u′v′ +

j=N+1∑
j=0

[u′v]xj (7)

In order to transmit information between each jump, we define {·}j{·}j{·}j, [·]j[·]j[·]j be the average
and difference of the function values on xj respectively, and rewrite each jump as

[u′v]xj = −u′(x−j) v(x−j) + u′(x+
j) v(x+

j)

= {1

2

(
u′(x+

j) + u′(x−j)

)
} [v(x+

j)− v(x−j)] + [u′(x+
j)− u′(x−j)] {1

2

(
v(x+

j) + v(x−j)

)
}

= {u′}j[v]j + [u′]j{v}j (8)

The second term [u′]j{v}j disappears since u is continuous. On the other hand, we wish
to make the equation symmetric on u, v, so we add symmetric terms {v′}j[u]j for each j.
Together with the penalty term, we obtain the weak form with a(u, v) which is a bilinear
function symmetric on u, v:

a(u, v) ≡
j=N∑
j=0

∫ xj+1

xj

u′v′ +

j=N+1∑
j=0

(
{u′}j[v]j + {v′}j[u]j︸ ︷︷ ︸

symmetric term

)
+ γ

N+1∑
j=0

1

|Ij|
[u]j[v]j︸ ︷︷ ︸

penalty term

(9)

(Notice that when the test function v is continuous, the weak form is essentially the same
as the one in FEM 1).

1since the second term and the penalty term would disappear.

4

Assume u is to be approximated by a linear combination of φ

uh =

j=M∑
j=1

αjφj (10)

so we have

a(uh, vh) =

∫
f vh + symmetric term + penalty term

a
(j=M∑
j=1

αjφj, φi

)
=

∫
f φi + symmetric term + penalty term for i = 1...M

j=M∑
j=1

a(φj, φi)︸ ︷︷ ︸
Sij

αj =

∫
f φi︸ ︷︷ ︸
ri

+ symmetric term + penalty term for i = 1...M (11)

Again we are left with the standard problem Sα = r. This is called the Discontinuous
Galerkin Finite Element Method (DG-FEM).

2.2 Essence of the Penalty Term

Suppose we have∑
Ij

∫ xj+1

xj

u′v′ +
∑
Ij

(
{u′}j[v]j + {v′}j[u]j

)
=

∫
fv

and we wish to solve for u. Writing in matrix form, it is easy to see that the stiffness matrix
in LHS may be singular 2. Therefore we wish to add a penalty term to LHS such that
the matrix is always invertible and the solution can be uniquely determined. Therefore we
define

a(u, v) ≡
∑
Ij

∫ xj+1

xj

u′v′ +
∑
Ij

(
{u′}j[v]j + {v′}j[u]j

)
+ γ

∑
Ij

1

|Ij|
[u]j[v]j︸ ︷︷ ︸

penalty term

(12)

and we claim that the stiffness matrix S defined by a(u, v) is positive definite. We are
going to show that, for a chosen A, if γ is large enough we would always have

a(u, v) ≥ A ||u||1,h2 ∀u ∈ Vh (13)

where Vh is the finite element(DG) space and ||u||1,h is a well-defined norm. Then we know
that S is positive definite and thus invertible, and we are done.

With the conventional norm || · ||I = (·, ·)I
1
2 in which the inner product is defined as

(f, g)I =
∫
I
fg for any functions f, g, we can now define ||u||1,h:

2Take u to be a non-zero constant function and LHS would become zero.

5

Definition 2.2.1:

||u||1,h =
(∑

Ij

||u′||Ij
2

+
∑
Ij

| {u′ }j|2 |Ij|+
∑
Ij

γ

|Ij|
| [u] |j2

) 1
2

and ||u||1,h is a well-defined norm. In particular, it satisfies the norm property

||u||1,h ≥ 0 and ||u||1,h = 0 ⇐⇒ u = 0

Proof: ”⇐ ” is trivial.
” ⇒ ” : We must have both ||u′||Ij

2 and | {u′}j |2 equal to zero. The former term equals
to zero implies that u is a piecewisely constant function . The latter term equals to zero
implies that there are no differences between the function values of u on all nodes including
the boundary, whose value is defined to be zero. Hence we must have u being a constant
zero function.

Before proceeding we would need the following:

Theorem 2.2.2 : (Trace Inequality) Let v be a function on domain Ω and H be the length
of Ω.

Then we have ∫
∂Ω

|v|2ds ≤ cH−1 ||v||Ω2 + cH ||∇||Ω2

for some constant c. Or in 1D sense,

|v(a)|2 + |v(b)|2 ≤ cH−1 ||v||I2 + cH ||v′||I2
(14)

with H = |I| being the length of the interval.

Theorem 2.2.3 : (Inverse Inequality) Let u be a function on the interval I. Then we have

||u′||2 ≤ c |I|−2||u||I2

Or

|I|2||u′||2 ≤ c ||u||I2 (15)

for some constant c.

Claim 2.2.4 : We have ∑
Ij

|Ij| |{u′}j|2 ≤ c
∑
Ij

||u′||Ij
2

for some constant c.

6

Proof: Applying Trace Inequality and Inverse Inequality, we have∑
Ij

|Ij| |{u′}j|2

(Trace., equation (14)) ≤
∑
Ij

|Ij|
(
ĉ |Ij−1|||u′||Ij

2
+ ĉ |Ij| ||u′′||Ij

2

)
= ĉ

∑
Ij

(
|Ij||Ij|−1||u′||Ij

2
+ |Ij|2 ||u′′||Ij

2

)
= ĉ

∑
Ij

(
||u′||Ij

2
+ |Ij|2 ||u′′||Ij

2

)
(Inverse., equation (15)) ≤ ĉ

∑
Ij

(
||u′||Ij

2
+ č ||u′||Ij

2

)
= c

∑
Ij

||u′||Ij
2

for some constant c.

Claim 2.2.5 : We have∑
Ij

{u′}j [u]j ≤ c1 δ
∑
Ij

||u′||Ij
2

+
c2

δ

∑
Ij

1

Ij
| [u]j |2

for some constant c1, c2.

Proof: ∑
Ij

{u′}j [u]j

≤
∑
Ij

|{u′}j||[u]j|

(AM-GM.) ≤
∑
Ij

(δ
2
|Ij||{u′}j|2 +

1

δ|Ij|
[u]j

2
)

(Claim 2.2.4) ≤
∑
Ij

c1 δ ||u′||Ij
2

+
∑
Ij

1

δ|Ij|
[u]j

2

= c1 δ
∑
Ij

||u′||Ij
2

+
c2

δ

∑ 1

|Ij|
|u|Ij

2

for arbitrary constant δ and some constant c1, c2.

7

Finally cleaning up:

a(u, u)− A ||u||1,h2

(equation (12), Def. 2.2.1) =

(∑
Ij

||u′||Ij
2 − 2

∑
Ij

{u′}j[u′]j +
∑
Ij

γ

|Ij|
|[u]j|2

)
− A

(∑
Ij

||u′||Ij
2

+
∑
Ij

|Ij||{u′}j|2 +
∑
Ij

γ

|Ij|
|[u]j|2

)

= (1− A)
∑
Ij

||u′||Ij
2

+ (1− A)
∑
Ij

γ

Ij
|[u]j|2

− 2
∑
Ij

{u′}j[u′]j − A
∑
Ij

|Ij||{u′}j|2

(Claim 2.2.4, 2.2.5) ≥ (1− A)
∑
Ij

||u′||Ij
2

+ (1− A)
∑
Ij

γ

Ij
|[u]j|2

−
(
c1 δ

∑
Ij

||u′||Ij
2

+
c2

δ

∑ 1

|Ij|
|u|Ij

2
)
− c3A

∑
Ij

||u′||Ij
2

= (1− A− c1δ − c3A)
∑
Ij

||u′||Ij
2

+ (γ − γA− c2

δ
)
∑
Ij

1

|Ij|
|[u]j|2

≥ 0

for γ large enough3 according to the chosen A and δ, which is equivalent to equation
(13). Q.E.D.

3For instant, choose A = 1/(2c3) and δ = −1/(2c1c3), then take γ ≥ (4c1c2c3
2)/(1− 2c3).

8

2.3 2-Dimensional DG-FEM

Now we may consider the general problem:

−4u = f in Ω

u = gD on ΓD
∂u
∂n

= gN on ΓN

(16)

which is the Poisson’s Equation −4u = f , where f is given and u is the unknown
function that describes the temperature on a domain Ω, together with the given temperature
gD on boundary ΓD (Dirichlet boundary condition) and the given heat flux4gN on
boundary ΓN (Neumann boundary condition).

Figure 2.3.a: Example of a 2D domain

Recall that in 1D problem with domain I = [a, b], solving by FEM we multiply both sides
of the equation by an arbitrary continuous function v and do integration by part

−
∫ b

a

u′′v dx =

∫ b

a

u′v′ dx− u′v|ba =

∫ b

a

fv dx

Notice that, by Fundamental Theorem of Calculus, the term u′v|ba is indeed

u′v|ba = (u′v)(b)− (u′v)(a) = (u′v)(b) · nb + (u′v)(a) · na

where nb = 1, na = −1 are the norm derivatives at boundary nodes. Similarly, in the general
problem we have:

−
∫

Ω

4u v dx =

∫
Ω

∇u · ∇v dx−
∫
∂Ω

(∇u · n) v ds

=

∫
Ω

∇u · ∇v dx−
∫
∂Ω

∂u

∂n
v ds

=

∫
Ω

fv dx (17)

in which we have reduced the equation from the strong form to a more desirable weak form.

Now we take a look at the 2D problem. We would like to approximate u by a linear
combination of some chosen basis functions in a finite element space. We may consider
partitioning the domain into finite elements in the form of triangles:

4The rate of heat energy transfer through a surface.

9

Figure 2.3.b: Partition of a 2D domain in triangles and edge sets: EIh, EDh and ENh

Denote a triangle by K and its diameter by h, we let Th be the set of all triangles and
define the following sets:

EIh = {eh : eh = ∂K+ ∩ ∂K− ∀K ∈ Th}: set of interior edges

EDh = {eh : eh = ∂K+ ∩ ΓD ∀K ∈ Th}: set of boundary edges on ΓD

ENh = {eh : eh = ∂K+ ∩ ΓN ∀K ∈ Th}: set of boundary edges on ΓN

Eh = EIh ∪ EDh .

(18)

(Note that the signs of the triangles are declared relatively; and interior edges must align
with triangles of different signs. Triangles at the boundary are always denoted by K+.) Thus
now we can make our choice of basis functions to be discontinuous across the edges, and
proceed on DG-FEM. Take v to be the chosen basis functions, we then have

−
∫

Ω

4u v dx = −
∑
K∈Th

∫
K

4u v dx

=
∑
K∈Th

∫
K

∇u · ∇v dx−
∑
K∈Th

∫
∂K

∂u

∂n
v ds

=
∑
K∈Th

∫
K

∇u · ∇v dx−
∑
eh∈EDh

∫
eh

∂u

∂n
v ds−

∑
eh∈ENh

∫
eh

∂u

∂n
v ds

−
∑
eh∈EIh

∫
eh

(∂u+

∂nn+
v+ +

∂u−

∂nn−
v−
)
ds

=

∫
Ω

fv dx (19)

We wish to find out a symmetric bilinear function ah(u, v), whose stiffness matrix is
positive definite, to solve for the unknown u. For simplicity, we denote∫

k

fg dx ≡ (f, g)K and

∫
eh

fg ds ≡ < f, g >eh

Also we define the notations {·}, [·] on function and norm derivative:

{u} ≡ 1

2
(u+ + u−) and [u] ≡ u+ − u−

{∂nu} ≡
1

2

(∂u+

∂n+
+
∂u−

∂n+

)
and [∂nu] ≡ ∂u+

∂n+
− ∂u−

∂n+
(20)

10

Then look into the term regarding the set of interior edges. By noticing the direction of
the norm derivatives and the continuity of u, we have∑

eh∈EIh

∫
eh

(
∂u+

∂n+
v+ +

∂u−

∂n−
v−
)
ds =

∑
eh∈EIh

∫
eh

(
∂u+

∂n+
v+ − ∂u−

∂n+
v−
)
ds

=
∑
eh∈EIh

(
<
∂u+

∂n+
, v+ >eh − <

∂u−

∂n+
, v− >eh

)

(after rearranging) =
∑
eh∈EIh

(
< {∂nu} , [v] >eh + < [∂nu] , {v} >eh

)
(since [∂nu] = 0) =

∑
eh∈EIh

< {∂nu} , [v] >eh (21)

Rewrite equation (19) with the notations defined, we have :

−(4u, v) =
∑
K∈Th

(∇u,∇v)K −
∑
eh∈EIh

< {∂nu} , [v] >eh −
∑
eh∈EDh

< ∂nu, v >eh

−
∑
eh∈ENh

< ∂nu, v >eh

= (f, v) (22)

To make the expression in the left hand side symmetric on u, v, we add the artificial
terms

−
∑
eh∈EIh

< {∂nv} , [u] >e and −
∑
eh∈EDh

< ∂nv, u >eh

Notice that the first term equals to 0 since [u] = 0 by continuity of u. In the second
term, u = gD which is given, so we add this term to both sides of the equation. Also∑

eh∈ENh
< ∂nu, v >eh=

∑
eh∈ENh

< gN , v > is known, so this term is moved to the right hand

side.

To make the bilinear form coercive (positive definite), we add the penalty terms∑
eh∈EIh

γ

|eh|
< [u] , [v] >eh= 0 and

∑
eh∈EDh

γ

|eh|
< u, v >eh=

∑
eh∈EDh

γ

|eh|
< gD, v >eh .

The first and second terms are added to the left hand side, while the third term is added to
the right hand side. With the unknown values stay in the left hand side and away from the
right hand side, we may define the left hand side as a bilinear form ah(u, v):

ah(u, v) ≡
∑
K∈Th

(∇u,∇v)K −
∑
eh∈EIh

(
< {∂nu} , [v] >eh + < {∂nv} , [u] >eh −

γ

|eh|
< [u] , [v] >eh

)
−
∑
eh∈EDh

(
< ∂nu, v >eh + < ∂nv, u >eh −

γ

|eh|
< u, v >eh

)
(23)

11

Note that the penalty terms are added to the interior and Dirichlet edges but not to the
Neumann edges. This is because the Neumann boundary terms have been moved to the
right hand side.

Also, adopting the notation that on the boundary edges

{∂nu} = ∂nu, {∂nv} = ∂nv, [u] = u, [v] = v,

then we can write the bilinear form in equation (25) as a more compact form (recall that
Eh = EIh ∪ EDh)

ah(u, v) ≡
∑
K∈Th

(∇u,∇v)K−
∑
eh∈Eh

(
< {∂nu} , [v] >eh + < {∂nv} , [u] >eh −

γ

|eh|
< [u] , [v] >eh

)
(24)

We also define the right hand side, which depends only on v and is composited of known
values, as a function F (v) by

F (v) ≡ (f, v) +
∑
eh∈EDh

(γ

|eh|
< gD, v >eh − < gD, ∂nv >eh

)
+
∑
eh∈ENh

< gN , v >eh (25)

Thus, we have shown the following: If u satisfies the problem (16) and belongs to C1(Ω)
then u satisfies the equation (26) for all v ∈ Eh (Eh is the space of test functions).

IN GENERAL. The DG finite dimensional space is defined by

Vh = {vh | vh|K ∈ Pq, ∀K ∈ Th}

where Pq is the vector space of polynomials of total degree q in the variables x, y in two
dimensions and x, y, z in three dimensions.

We now can define the DG approximation uh ∈ Vh of u as follows: Find uh ∈ Vh
satisfying

ah(uh, vh) = F (vh), ∀vh ∈ Vh. (26)

The existence and uniqueness of uh are consequences of the following result:
Introducing the norm ‖ · ‖1,h : Eh → R defined by

‖v‖1,h =

{ ∑
K∈Th

‖∇v‖2
K +

∑
eh∈Eh

|eh| | {∂nv} |2eh +
∑
eh∈Eh

γh
|eh|
| [v] |2eh

}1/2

,

we have
Lemma 2.3 For the bilinear form ah(·, ·) the following continuity and coercivity properties

hold
|aγhh (u, v)| ≤ ‖u‖1,h‖v‖1,h, ∀u, v ∈ Eh.

There exist positive constants γ and ca depending only on q and the shape regularity of
the cells in Th such that if γh ≥ γ, then

aγhh (v, v) ≥ ca‖v‖2
1,h, ∀v ∈ V h, (27)

12

3 An 1D example: u = x(2− x)

Overview: In this section, we are going to see an example of solving the heat equation
using DG-FEM. The main idea is to carefully construct the corresponding stiffness matrix
from the bilinear function defined and then solve for the linear system.

Recall the 1D problem (1) in Section 2.1. Suppose now the problem is defined on
I = [0, 1] and we have f = −2, u(0) = 0 and u(1) = 1. The solution can be found explicitly
as u = x(2− x), but now we try to solve for the approximation uh using DG-FEM.

Step 1. Partition the domain The accuracy of the approximation as well as the compu-
tational cost increase with the number of cells (which are intervals in 1D). In this example,
we take number of cells equal to 4 (so N = 3): I0 = [0, 0.25], I1 = [0.25, 0.5], I2 = [0.5, 0.75]
and I3 = [0.75, 1].

Step 2. Choose the basis functions We want each u
(Ij)
h to be approximated by a linear

combination of a set of basis functions within each interval Ij. These chosen basis functions
also take the role as the test function v. We may make our choice of the basis functions to
be linear, quadratic or polynomials in higher degree to improve the performance.

Legendre polynomials and lagrange polynomials are some of the popular choices. In this
example, the set of linear lagrange polynomials φ̂0 = 1−x, φ̂1 = x over the master interval
[0, 1] is chosen for use. It would need to be mapped into the corresponding set of functions

φ
(Ij)
0 , φ

(Ij)
1 over the local interval Ij for each j afterwards to serve our purpose.

Step 3. Construct the matrix In equation (11) we know that each entry Sij of our
stiffness matrix S is defined by the bilinear symmetric function a(φj, φi). In our choice of
φ, each of the four intervals has 2 degree of freedom. Thus S is a 8 × 8 matrix, with each
parameter of a runs across all φ

(I0)
0 , φ

(I0)
1 , φ

(I1)
0 , φ

(I1)
1 , ... , φ

(I3)
0 , φ

(I3)
1 .

a(φ
(I0)
0 , φ

(I0)
0) a(φ

(I0)
1 , φ

(I0)
0) a(φ

(I1)
0 , φ

(I0)
0) a(φ

(I1)
1 , φ

(I0)
0) · · ·

a(φ
(I0)
0 , φ

(I0)
1) a(φ

(I0)
1 , φ

(I0)
1) a(φ

(I1)
0 , φ

(I0)
1) a(φ

(I1)
1 , φ

(I0)
1)

a(φ
(I1)
0 , φ

(I1)
0) a(φ

(I1)
1 , φ

(I1)
0)

. . .

a(φ
(I1)
0 , φ

(I1
1) a(φ

(I1)
1 , φ

(I1)
1)

...

Note that this global matrix is composed by blocks of 2 × 2 local matrices, and each

block stores information of basis functions interaction within or across intervals. The four
diagonal blocks store those interactions within an interval, the six sub-diagonal blocks
store those interactions across adjacent intervals, and other blocks store zeros – since the
basis function values are non-zero only if they are within or on the boundary of their defined
intervals.

13

Recall that a is defined as

a(u, v) ≡
j=N∑
j=0

∫ xj+1

xj

u′v′ +

j=N+1∑
j=0

(
{u′}j[v]j + {v′}j[u]j︸ ︷︷ ︸

symmetric term

)
+ γ

N+1∑
j=0

1

|Ij|
[u]j[v]j︸ ︷︷ ︸

penalty term

(9)

where {·}j is the average of jump on xj and [·]j is the jump on xj as defined in equation
(8). Let ku, kv ∈ {0, 1} be the indices of basis functions within the set that serve the role for
the trial function u and the test function v respectively. We now look into the computation
of each part of the equation.

Step 3.1. Compute
∫
Ij
u′v′. From the summation sign in equation (9), we know that

this term is computed with respect to intervals, so only the diagonal blocks are involved.
The term ∫

Ij

φ
′(Ij)
ku

φ
′(Ij)
kv

may be computed by first considering φ
′(Ij)
ku

φ
′(Ij)
kv

. It can be mapped from φ̂′kuφ̂
′
kv with a

note to the change in slope of the basis functions from the master interval [0, 1] to the local
interval Ij.

Figure 3.a: Mapping from master interval to local interval

Afterwards integration can be done explicitly or using Gaussian Quadratures.

Step 3.2. Compute {u′}j[v]j+{v′}j[u]j. This term is computed with respect to nodes
which stand between adjacent intervals, so for each node xj both the (j−1)-th, j-th diagonal
block and the related sub-diagonal blocks are involved. Now since

{φ′ku}j[φkv]j + {φ′kv}j[φku]j

is symmetric on φku , φkv , so we may first look at the left term. After expansion we get the
expression

{φ′ku}j[φkv]j

=
1

2

(
φ′ku(x+

j) + φ′ku(x−j)
)(
φkv(x+

j)− φkv(x−j)
)

=
1

2
φ′ku(x+

j)φkv(x+
j) − 1

2
φ′ku(x+

j)φkv(x−j) +
1

2
φ′ku(x−j)φkv(x+

j) − 1

2
φ′ku(x−j)φkv(x−j) (28)

which contains four terms: the ”++” term, ”+−” term, ”−+” and ”−−” term respectively.

14

Figure 3.b: the ”++” term, ”+−” term, ”−+” term and ”−−” term and their positions

Recall in Figure 2.1.b that x+
j and x−j denote the right interval and left interval from xj

respectively, thus we may now see that the ”++” term is non-zero only if both φ′ku and φkv
are from Ij ; so this term is added to the j-th diagonal block. The ”+−” term is non-zero
only if φkv is on Ij−1 and φ′ku is on Ij; so this term is added to the right sub-diagonal block
of the (j − 1)-th diagonal block. Similarly the ”−+” term is added to the left sub-diagonal
block of the j-th diagonal block, and the ”−−” term is added to the (j − 1)-th diagonal
block.

The expansion of the right term {φ′ku}j[φkv]j is similar and the resultant four terms may
be added to the corresponding blocks accordingly with the same principle.

Step 3.3. Compute the penalty term. This term is computed with respect to
nodes. Again we may expand and get the four ”++”, ”+−”, ”−+”, ”−−” terms:

γ

|Ij|
[φku]j[φkv]j

=
γ

|Ij|
(
φku(x+

j)− φku(x−j))
)(
φkv(x+

j)− φkv(x−j)
)

=
γ

|Ij|
φku(x+

j)φkv(x+
j) − γ

|Ij|
φku(x+

j)φkv(x−j) − γ

|Ij|
φku(x−j)φkv(x+

j) +
γ

|Ij|
φku(x−j)φkv(x−j)

and added to the corresponding blocks respectively following Step 3.2. (note that when
φku , φkv come from adjacent intervals, the value |Ij| in the term is computed as the average
of |Ij−1| and |Ij| instead). The choice of γ is arbitrary – as long as it is ”large enough” (see
Section 2.2) with respect to the degree of polynomial chosen for the basis functions. In
this example, we choose γ = 5.

Note 1: At boundary nodes. For Step 3.2 and 3.3, we have to be more careful
when working on the boundary nodes. Clearly at x0, we have only the ” + +” term, while
at xN+1 we have only the ”−−” term, since on these two nodes we are working on intervals
I0 and IN only and their adjacent intervals are not defined .

For the same reason, an ”average jump” {·} of a function on the boundary node is defined
to be the function value at that node itself within the defined interval (while a ”jump” [·]
is defined as the function value of x+

j minus by that of x−j for all nodes. Recall that on

15

boundary nodes, we define x−0 = x+
N+1 = 0). For example, at Step 3.2, we have the term

{φ′ku}0[φkv]0 = φ′ku(x+
0)φkv(x+

0) and {φ′ku}N+1[φkv]N+1 = φ′ku(x−N+1)
(
−φkv(x−N+1)

)
, which are

added to the 0-th diagonal block and N -th diagonal block respectively.

Note 2: Pre-computation. Before Step 3, we may pre-compute the terms φ̂kuφ̂kv ,
φ̂′kuφ̂kv , φ̂′kuφ̂

′
kv for each ku, kv = {0, 1} and for each ” + +”, ” +−”, ”−+”, ”−−” term on

the master interval. They will come into handy when we are working on the bilinear function
– since mapping the computed terms from the master interval to local intervals requires only
easy linear transformation.

The below shows the actual figures from each step of the matrix construction in our
example:

16

Figure 3.c. Step-by-step illustration of matrix construction

Step 4. Construct the R.H.S. vector Rewrite equation (11) with the defined notation,
we will have the right hand side vector equal to∫

Ij

f φ
(Ij)
kv

+ {φ′kv}j[φku]j︸ ︷︷ ︸
symmetric term

+
γ

|Ij|
[φku]j[φkv]j︸ ︷︷ ︸

penalty term

(29)

which is a 8 × 1 vector in our example. The integral term is computed with respect to
intervals, which can be found explicitly or by Gaussian Quadrature with careful handle of
the basis functions mapping from the master intervals to local intervals. For the symmetric
term and the penalty term which are to be computed with respect to nodes, notice that we
define the jump [φku]j to be zero for all internal nodes since u is continuous. Hence we only
need to consider those on boundary nodes x0 and xN+1 and add them to the I0 position and
IN position of the vector accordingly.

Notice that the jump [φku]0 is essentially u(a) and [φku]N+1 is essentially −u(b). With
respect to Note 1 in Step 3, we then obtain our boundary symmetric terms φ′kv(x+

0)u(a) and
φ′kv(x−N+1)

(
−u(b)

)
, and also the boundary penalty terms γ

|I0|u(a)(φkv(x+
0)) and γ

|IN |

(
−u(b))

(
−

(φkv(x−N+1))
)
. They are added to the I0-th and IN -th position of the vector. Substituting

everything we would get our final R.H.S. vector

[0.25 0.25 0.25 0.25 0.25 0.25 4.25 16.25]T

17

Step 5. Solve the linear system. With the given matrix and R.H.S. vector, we
may now solve the linear system. In C programming, we may use the dense matrix solver
dgesv in LAPACK, which implements the LU decomposition with partial pivoting and row
interchanges:

dgesv_(size_Of_Global_Matrix, number_Of_RHS,

pointer_To_Global_Matrix, leading_Dimension_Of_Global_Matrix,

pivot_Indices,

pointer_To_Solution, leading_Dimension_Of_Solution,

info);

and our uh approximation, illustrated by Matlab, would be as follow:

Figure 3.d. Approximation of u using DG-FEM.

18

4 Parallel Computation on 1D DG-FEM

Overview: In this section, we are going to see how we may perform parallel computation
on 1D DG-FEM: in the first stage we work on the linear system construction, while in the
second stage we work on the linear system solver.

4.1 Before we begin

It is essential to understand why we are interested in parallel computation on DG-FEM.
In Section 3 we have already seen the result of approximating u using 4 cells. We may
further increase the number of cells to solve the same problem:

Figure 4.1: performance of uh in increasing number of cells

We can see that the error norm ||u−uh||2 =
(∑

I

∫
I
(u−uh)2

) 1
2

behaves as ch2, where h

denotes the cell size and decreases with the increase in number of cells. Hence the accuracy of
our approximation is improving. However, larger degree of freedom follows and the matrix
essentially grows larger. Time and memory becomes a huge concern in solving enormous
linear system, therefore we wish to parallelize the computation: let multiple processors store
information and work together locally to help reduce the overall computational time as well
as the memory storage within a processor.

We would work in two stages: the first stage is to construct the linear system in parallel,
while the second stage is to solve the linear system in parallel.

19

4.2 First Stage: Constructing Linear System in Parallel

In Section 3, Step 3, observe that each interval or node corresponds to a local matrix
during the calculation, as shown in Figure 3.c.(for our convenience , we now call these local
matrices at interval or node level to be cell matrices). Notice that the construction of
R.H.S. vector works in a similar flow so we omit the writing here. Now it is natural to design
parallelization in the following way:

Figure 4.2.a: Matrix construction in parallel

We may work in the MPI environment to do the parallelization.

Step 1. Assign each processor to work on a certain number of sequential cells, do the
assembly process and obtain a corresponding local matrix at the processor level (for our
convenience, processor matrix). Since the calculation of cell matrices on the boundary
nodes is different from those on the internal nodes (Section 3, Note 1), we may specify
the root processor to handle the boundary cell matrices.

Step 2. Assign the root processor to receive processor matrices from other processors
and do the assembly process to obtain the global matrix.

For the root:

MPI_Recv(pointer_To_Processor_Matrix, size_Of_Processor_Matrix,

type, sender_ID, tag, MPI_COMM_WORLD, &status);

and for other processors:

MPI_Send(pointer_To_Processor_Matrix, size_Of_Processor_Matrix,

type, root, sender_ID, tag, MPI_COMM_WORLD, &status);

Notice that the processor matrices may have overlapping positions in the global matrix,
and the insertion and addition of the processor matrices to positions in the global matrix is
to be determined and done by the root processor.

Step 3. After the construction of the global matrix, the root processor may proceed on
sending the matrix to the solver as in Section 3, Step 5. Together with the R.H.S. vector
we can then solve for the linear system.

20

Time Analysis. Enlarge the number of cells up to 10, 000, we may now see clearly the
time reduction in linear system construction (including the MPI communication time):

Figure 4.2.b: Linear system construction time against number of processors = 1, 2, 4, 8, 16, 32, 64

However, the overall computational time may still be large when considering also the
time used by the linear system solver. For instance, in this example we use dgesv which
takes up to around 20 seconds to complete the solution. In general, LAPACK provides only
direct methods – matrix factorizations as the solver option, yet the fact that our stiffness
matrix is symmetric and positive-definite actually indicates that we may find some iterative
methods, more specifically the Conjugage Gradient Method, very useful in reducing the
computational cost in solving our large linear system.

Memory Improvement Notice that for each processor except the root, it only needs to
handle the processor matrix and thus the memory usage for most of the processors individ-
ually would be small.

On the other hand, notice that in the above procedure we are storing every entry of the
global matrix regardless of the fact that our matrix is sparse with non-zero entries confined
to a diagonal band. In LAPACK, dgbsv takes care of input matrices in such structure(band
matrix), and in general, matrix representation using Compressed Row Storage format
is more desirable for sparse matrices. In such format, the assembly progress may require
more careful handling as we need to specify a more complex local-to-global mapping, but
the sequentiality of cells owned by a processor in Step 1 of this section may also be relaxed
since we may omit the zeros when we are storing the processor matrices with non-sequential
cells.

21

4.3 Second Stage: Solving Linear System in Parallel

We now aim for a fully parallel code structure – that is, there is no communication
between processors, so they work totally in parallel. Then we must get rid of the assembly
process as well as consider parallelization in solving the linear system in addition to that in
constructing the linear system.

Unlike direct methods which modifies the matrix as a whole to obtain the exact solution
of the linear system in finitely many operations, iterative methods use successive approxima-
tions to obtain more accurate solutions to a linear system at each step, and enjoy the benefit
that they involve the matrix only via the context of matrix-vector products (MVP) (c.f.
[2]). Therefore, parallelization may be implemented in iterative methods by decomposition
of the matrix and the solution vector into blocks (c.f. [3]).

In particular, the Krylov subspace methods in non-stationary iterative methods are usually
chosen for parallelization due to dominance of MVP computations and independent vector
updates (c.f. [4]). AztecOO in Trilinos provides implementation of parallelization using
preconditioned Krylov methods, and thus comes to our choice as a solver package (c.f.
[5]). The overall parallelization goes in the following way (the R.H.S. vector construction is
omitted):

Figure 4.3.a: Solving linear system in parallel

Step 1. Construct the row map – assign each processor a number of global rows,
the data of which they may have access to set or modify:

Epetra_Map rowMap(sum_Of_Global_Rows,

number_Of_Local_Rows, global_Indices_Of_Local_Rows,

starting_Index, &comm);

Note that the rows need not to be sequential for each processor, while access to the same
row for different processors should be avoided. The column map, which allows processors
to have access to the column-entries in their assigned global rows, may be either manually
constructed or automatically constructed after column entries are entered to the global rows.

Also note that we are no longer working on processor matrices as in Section 4.2, but
instead working on accessible global rows by each processor. Here we say ’accessible’ in-
stead of ’owned’ since although the processors access the global rows row-wisely, the actual

22

memory distribution in Epetra CrsMatrix that we are working on goes in an arbitrary two-
dimensional distribution of rows and columns over processors.

Step 2. Assign each processor to work on a number of cells. The cell matrices of these
cells should have entries located on the global rows that the processor has access to, so after
computation of each cell matrix, the processor is able to insert or sum the values into the
corresponding global rows position. The matrix is stored in Compressed Row Storage
format.

Epetra_CrsMatrix *Global_Matrix

= new Epetra_CrsMatrix(Copy, rowMap, starting_Index);

Global_Matrix -> InsertGlobalValues

(global_Rows_Index, number_Of_Entries,

values_Of_Entries, column_Indices_Of_Entries);

Global_Matrix -> SumIntoGlobalValues

(global_Rows_Index, number_Of_Entries,

values_Of_Entries, column_Indices_Of_Entries);

Note that the cell matrices of adjacent cells are going to have values on overlapping global
rows. However since each global row can only be accessible by one processor, in order for the
summation of values on the overlapping global rows to be completed we must either introduce
communication between processors, or use the ghost cell method: let each processor have
additional cell information in order to complete their local work.

Figure 4.3.b: Ghost cell method

We may implement the ghost cell method by asking the processors to calculate also the
ghost cell matrix, so as to have completed global rows. After all the entries are inserted, fill-
complete is called to do local rearrangement of data via distributed-memory communication:

Global_Matrix -> FillComplete();

23

and the graph structure of the matrix is then fixed. Note that we may still modify the entry
values afterwards, but set of the entries should be done before this command is called.

Step 3. The AzetecOO solver may now be created to solve the problem:

u = new Epetra_Vector(rowMap);

problem = new Epetra_LinearProblem(GlobalMatrix, u, RHS);

AztecOO solver(*problem);

AZ_defaults(options, params);

solver.SetAllAztecOptions(options);

solver.SetAllAztecOptions(params);

solver.Iterate(max_Number_Of_Iterations, tolerance);

Linear System Construction Time Analysis As discussed in Step 2, there is extra
communication time between processors or extra ghost-cell-matrix calculation time for each
processor in order to complete the insertion and summation of global entries. Nevertheless,
when we are using the ghost cell method, the linear system construction time is hugely
reduced compared to that in Section 4.2.

Number of Processors 1 2 4 8 16 32 64
using MPI 7.032s 5.440s 3.683s 2.995s 2.582s 2.385s 2.273s

using Trilinos 0.0148s 0.00796s 0.00434s 0.00255s 0.00194s 0.00191s 0.00295s

Figure 4.3.c: Comparison of linear system construction time using number of cells = 10,000

Indeed, we may compare the performance of MPI using number of cells equal to 10,000, with
the performance of Trilinos using number of cells up to 5,000,000:

Figure 4.3.d: Comparison of linear system construction time
against number of processors = 1, 2, 4, 8, 16, 32, 64

24

The main factor of the improvement may be the usage of Compressed Row Storage
format that brings effective exchange of information from local to global. Also the entries
are inserted to the global environment once they are computed at the cell matrix level,
skipping the construction, sending and receiving of the processor matrices and thus result in
less construction time.

Linear System Solver Time Analysis

Choice of Solvers. The parameters in AzetecOO may be specified. By default, the
solver using is Generalized Minimal Residue (GMRES). However since our stiffness
matrix enjoys symmetry and positive definiteness, we may set

options[AZ_solver] = AZ_cg;

to use Conjugate Gradient method in our problem.

Choice of Pre-conditioners. We may also consider the use of pre-conditioners,
which works on transformation of the matrix to an equivalent form that has more favourable
properties in an iterative method. Although using a pre-conditioner induces extra cost
initially for the set up and per iteration for applying it, we may have a gain in convergence
speed (c.f. [5]) The choice of pre-conditioners, just as the choice of solvers, depends on
the properties of the original matrix. Here we choose incomplete factorizations and algebra
multigrid pre-conditioners for performance comparison.

For pre-conditioner using incomplete factorizations (ilu), we may set:

options[AZ_precond] = AZ_dom_decomp;

options[AZ_subdomain_solve] = AZ_ilu;

For pre-conditioner using algebraic multigrid preconditioning, we may use the ML package
on Trilinos:

Teuchos:: ParameterList MLList;

ML_Epetra::SetDefaults(ProblemType, MLList);

ML_Epetra::MultiLevelPreconditioner* MLPrec

= new ML_Epetra::MultiLevelPreconditioner

(*Global_Matrix, MLList, true);

solver.SetPrecOperator(MLPrec);

Algebraic multigrid preconditioning that typically works best on sparse positive definite
matrices. The performance of ML may be tested by changing its parameters: aggregation,
coarse-type, smoother, increasing or decreasing, max level, and more (c.f.[6]). For instance,
if we set:

25

ML_Epetra::SetDefaults("DD", MLList);

MLList.set("aggregation: type", "Uncoupled");

MLList.set("coarse: type", "Amesos-UMFPACK");

MLList.set("smoother: type", "Aztec");

MLList.set("max levels", 6);

MLList.set("increasing or decreasing", "increasing");

Then ML may have a very desirable performance when compared to the ilu pre-conditioner:

Number of Processors 1 2 4 8 16 32 64
Using CG-ilu solving time 7.947s 5.222s 4.889s 4.867s 4.662s 4.130s 4.909s
Using CG-ML solving time 11.818s 8.872s 6.223s 5.534s 2.912s 1.333s 0.723s
Using CG-ilu number of iterations 2 9 24 40 68 128 249
Using CG-ML number of iterations 2 6 9 10 11 10 12

Figure 4.3.e: Comparison of linear system solver using number of cells = 5,000,000

When we increase the number of processors, the solving time using ML is hugely decreased
while the number of iterations has been relatively stable. Some more result regarding pa-
rameters of the ML pre-conditioner may be found in the Appendix. These figures provide
insight to the question how far we may reach using the existing solver packages in solving
the linear system.

26

5 Future Work

After implementation of parallelization on 1D DG-FEM, we may continue to work on the
followings:

1. General DG-FEM. It is natural to think of expanding the 1D parallel code to the
2D and 3D case. From Section 2.3 we can imagine that the code structure of the 2D case
is going to be more complicated, as the code has to be able to handle information in three
categories: cells(triangles), edges(internal or boundary), and nodes, whereas in the 1D
case we need only to handle two: cells (intervals) and nodes (internal or boundary). Also,
while we have the jump conditions being stored on the sub-diagonal blocks of the matrix
in the 1D case, we cannot do so in the 2D case given the fact that now each cell comes
across three other cells instead of two – so the linear system construction is going to be more
complex. The same applies to the 3D case, and the design of parallelization on the 2D or
3D cases would be flavourable.

2. Adaptive meshing. The discontinuity of the cell boundary solutions provides effec-
tive means for local refinement. As the computation is naturally cell-oriented, a change in
conditions within the cell, such as higher order or discretisation of the geometry so as to
achieve improve local accuracy, may be easily achieved in DG-FEM. Therefore we may look
into expanding the code to be adaptive.

3. More applications. The Poisson’s equation is an example that is relatively easy
to work on, since it involves only a derivative term. When come to chemical transport
phenomena, most often more derivative terms and physical quantities such as time, mass,
momentum or energy are involved. Therefore expanding the code to cover different chemical
transport equations may be considered.

27

Appendix

The result of solving the example in Section 4.3 using CG solver and ML pre-conditioner
with the following parameters:

• Number of cells : 5,000,000

• Degree of freedom: 2

• ML pre-conditioner option: ’DD’ (domain-decomposition method)

• ML pre-conditioner option: ’increasing’

• ML pre-conditioner option: ’max levels: 6’

28

Reference

[1] Sven Berger: Introduction to discontinuous Galerkin element methods, 1, Institute
of Aerodynamics, 2003.

[2] Rashid Mehmood, Jon Crowcroft: Parallel iterative solution method for large sparse
linear equation systems, 2.1, University of Cambridge, UCAM-CL-TR-650 ISSN 1476-2986,
2005.

[3] Rashid Mehmood, Jon Crowcroft: Parallel iterative solution method for large sparse
linear equation systems, 4, University of Cambridge, UCAM-CL-TR-650 ISSN 1476-2986,
2005.

[4] Rashid Mehmood, Jon Crowcroft: Parallel iterative solution method for large sparse
linear equation systems, 2.4, University of Cambridge, UCAM-CL-TR-650 ISSN 1476-2986,
2005.

[5] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato,
Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst:
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 3.1.1,
the Society of Industrial and Applied Mathematics, 2nd edition.

[6] Marzio Sala, Michael A. Heroux, David M. Day, James M. Willenbring: Trilinos
Tutorial, 11.4, Sandia Report SAND2004-2189, 2010.

29

Acknowledgement

This project was sponsored by Oak Ridge National Laboratory, Joint In-
stitute for Computational Sciences, University of Tennessee, Knoxville and
The Chinese University of Hong Kong. It is my great honor to be financially
supported by the aforementioned institutions to work on this project in the
past ten weeks.

A sincere thank to my mentors, Dr. Ohannes Karakashian and Dr. Kwai
Wong, for their continuous support and guidance throughout the project. Dr.
Karakashian has been more than generous in offering intellectual lectures that
are interesting and informative, while Dr. Wong has been very considerate
and full of wisdom in providing prospective insights to problem solving both
at work and in daily life.

Also thank the CSURE participants for being so cheerful and helpful in work
and in play. Especially thank Ming Wong and Helsa Chan for being such two
lovely flatemates who often bring laughter and good food to the apartment.
The memory in Apt. 102, Block 10 is unforgetable.

Lastly, thank my parents and my boyfriend for their love and endless sup-
port throughout the time. Thank God for His grace in letting me have such
an invaluable experience.

30

