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Quantum Monte Carlo Simulation 

Slater Determinant for N-electrons system 



What is QMCPACK?  
Ø Open-Source scientific software for quantum 
Monte Carlo simulation 

 
Ø Written in C++ with CUDA kernels 

Ø Utilizes CUDA (acceleration) and openMP 
(parallelization) 



Purpose 
Ø To Improve on the existing method in QMCPACK for 

evaluating single-particle updates to a system’s electron 
configuration  



Current QMC implementation 



Current QMCPACK implementation 



LU Decomposition 

A     =   L   *   U 



Current QMCPACK implementation 
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Current QMCPACK implementation 



Proposed Implementation 
Ø Using QR factorization versus LU factorization  

Ø Rank-k update versus Rank-1 update 

Ø Triangular solve versus Sherman Morrison formula  



Proposed Implementation 



QR Decomposition 

Note that Q is orthonormal and R is upper triangular.   



Proposed Implementation 
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Matrix Determinant Lemma 
Rank-1 case (note that A is R in our scenario)  

Rank-k case 

Ø  det( R + u*v’)   
 = det(  R * ( eye + (inv(R)*u) * v’) )  
 = det(R) * det( eye + w * v’) 



Proposed Implementation 



Proposed Implementation 



Givens Rotation  



Householder Reflection 



Returns R to upper triangular 

Ø  The updated column of R will be “shifted” at the n-1 column, 
where n is the size of the square matrix A.  

Ø  Utilizing the above techniques, zeros can be introduced 
below the diagonal in columns of R. 

Ø  Appropriate operations are performed on Q to maintain A = 
QR 

Ø  The updated column of R will be “shifted” at the nth 
column, where n is the size of the square matrix A.  

Ø  Utilizing the above techniques, zeros can be introduced 
below the diagonal in columns of R. 

Ø  Appropriate operations are performed on Q to maintain A = 
QR 



Implementation Timeframe: 10 weeks 
1) MATLAB 
Ø Establish basic algorithm execution flow in MATLAB 
Ø ~ 2 weeks 

2) C (MKL/LAPACKE) 
Ø Translate into BLAS/LAPACKE 
Ø ~ 2 weeks 

3) C, accelerated (cuBLAS) 
Ø  Practice GPU mem. management, invoke cuBLAS from C 
Ø ~ 1 week 

4) CUDA 
Ø  Move execution to GPU 
Ø ~ 2 weeks 

 



Results 
➢ Implemented the algorithm in CUDA  
➢ Used dynamic parallelism and cuBLAS 
 Kernel 1:  
Estimate  
determinant delta 
 
Operation 1:  
GEMV 
w = Qt * u 
 
Operation 2: 
TRSV (Child kernel) 
y = R * w 
 
Result: 
delta = y[k] + 1 



Results 
➢ Implemented the algorithm in CUDA  
➢ Used dynamic parallelism and cuBLAS 
 Kernel 2:  

Update R 
 
Operation 1:  
AXPY 
R = R + w * 
transpose(v) 
 
Operation 2: 
ROTG/ROT 
(Iterative) 
 
Result: 
Updated R 



Results 
Ø Test platform: Beacon GPU node 
Ø equipped with 4x Tesla K20Xm GPUs; used 1 GPU 



Results 
Ø GPU RAM: ~sizeof(float /double) * num_mats * (2n2+2n) 
Ø Flops per update (combined) 15n2  

Greatest 
performance 
at N < 256: 
 
5,000+ 
updates per 
second 
 
However, 
small matrices 
not relevant to 
our use case 
 
 



Discussion (Parallelism) 
Ø Sequential Givens rotations limit scalability 
Ø Level 1 BLAS calls account for majority of kernel 
runtime 

Ø Control flow cost greater than compute cost 



Discussion (Parallelism) 
Ø  Strategy: Adapt existing parallel implementations 

of Givens QR  (e.g., those based on Sameh and 
Kuck, 1978) or Householder QR 

Ø Some implementations require just ~5/8 of 
computational steps vs. sequential algorithms 
(Kontoghiorghes, 2002 p. 1266) 
Ø Effect: Decrease time cost of reforming 

triangular R, decrease execution gaps 
Ø Cost: Far more complex to implement 
 



Column permutations (used 
to reduce transformations 
required) 
 

Discussion (Parallelism) 



Discussion (Parallelism)  
Ø  Strategy: Replace column permutation with norm-

preserving change vector rotations  
 

Ø  Patterned on Golub and Van Loan, 1996 p. 
606-607 

 
Ø  Effect: Reduced complexity  

Ø R is always upper triangular (in memory) 
Ø  Runtime variability is reduced 
 

Ø  Cost: Increased flops 



Discussion (Parallelism)  
Ø  Rank-1 change is evaluated 

Ø  Applied immediately if accepted 
 
Ø  Contiguous accepted changes not grouped 
     



Discussion (Parallelism)  
Ø Strategy: Generalize implementation for rank-k 

column update; 
Ø Evaluate change submatrix 
Ø Apply changes to R only after contiguous 

acceptance pattern is broken 
 
Ø Effect: Leverage likely acceptance pattern  

Ø Perform block operations 
 

Ø Cost: More complex to implement 
Ø May require extensive modification to 

QMCPACK 



Discussion (CUDA) 
Ø Improved cuBLAS Management: 
Ø Share cuBLAS handles between synchronized 
kernels to minimize overhead 

Ø "...the recommended programming model is to create 
one CUBLAS handle per thread and use that CUBLAS 
handle for the entire life of the thread.”   

   ~CUDA Toolkit 6.5 Documentation: cuBLAS 

Ø Use cuBLAS streams to increase occupancy   
Ø Up to 16 concurrent kernels are supported 
(hardware dependent)  

    



Discussion (CUDA)  
Ø Decrease Memory Latency   
 

Ø Currently, kernels are heavily latency-bound 
(limited by memory access, not computation) 
 
Ø Reduce level of pointer indirection 
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