
Exploring QR Factorization on GPU
for Quantum Monte Carlo Simulation

Tyler McDaniel
Ming Wong

Mentors: Ed D’Azevedo, Ying Wai Li, Kwai Wong

Quantum Monte Carlo Simulation

Slater Determinant for N-electrons system

What is QMCPACK?
Ø Open-Source scientific software for quantum
Monte Carlo simulation

Ø Written in C++ with CUDA kernels

Ø Utilizes CUDA (acceleration) and openMP
(parallelization)

Purpose
Ø To Improve on the existing method in QMCPACK for

evaluating single-particle updates to a system’s electron
configuration

Current QMC implementation

Current QMCPACK implementation

LU Decomposition

A = L * U

Current QMCPACK implementation

Current QMCPACK implementation

Current QMCPACK implementation

Current QMCPACK implementation

Proposed Implementation
Ø Using QR factorization versus LU factorization

Ø Rank-k update versus Rank-1 update

Ø Triangular solve versus Sherman Morrison formula

Proposed Implementation

QR Decomposition

Note that Q is orthonormal and R is upper triangular.

Proposed Implementation

Proposed Implementation

Matrix Determinant Lemma
Rank-1 case (note that A is R in our scenario)

Rank-k case

Ø  det(R + u*v’)
 = det(R * (eye + (inv(R)*u) * v’))
 = det(R) * det(eye + w * v’)

Proposed Implementation

Proposed Implementation

Givens Rotation

Householder Reflection

Returns R to upper triangular

Ø  The updated column of R will be “shifted” at the n-1 column,
where n is the size of the square matrix A.

Ø  Utilizing the above techniques, zeros can be introduced
below the diagonal in columns of R.

Ø  Appropriate operations are performed on Q to maintain A =
QR

Ø  The updated column of R will be “shifted” at the nth
column, where n is the size of the square matrix A.

Ø  Utilizing the above techniques, zeros can be introduced
below the diagonal in columns of R.

Ø  Appropriate operations are performed on Q to maintain A =
QR

Implementation Timeframe: 10 weeks
1) MATLAB
Ø Establish basic algorithm execution flow in MATLAB
Ø ~ 2 weeks

2) C (MKL/LAPACKE)
Ø Translate into BLAS/LAPACKE
Ø ~ 2 weeks

3) C, accelerated (cuBLAS)
Ø  Practice GPU mem. management, invoke cuBLAS from C
Ø ~ 1 week

4) CUDA
Ø  Move execution to GPU
Ø ~ 2 weeks

Results
➢ Implemented the algorithm in CUDA
➢ Used dynamic parallelism and cuBLAS
 Kernel 1:
Estimate
determinant delta

Operation 1:
GEMV
w = Qt * u

Operation 2:
TRSV (Child kernel)
y = R * w

Result:
delta = y[k] + 1

Results
➢ Implemented the algorithm in CUDA
➢ Used dynamic parallelism and cuBLAS
 Kernel 2:

Update R

Operation 1:
AXPY
R = R + w *
transpose(v)

Operation 2:
ROTG/ROT
(Iterative)

Result:
Updated R

Results
Ø Test platform: Beacon GPU node
Ø equipped with 4x Tesla K20Xm GPUs; used 1 GPU

Results
Ø GPU RAM: ~sizeof(float /double) * num_mats * (2n2+2n)
Ø Flops per update (combined) 15n2

Greatest
performance
at N < 256:

5,000+
updates per
second

However,
small matrices
not relevant to
our use case

Discussion (Parallelism)
Ø Sequential Givens rotations limit scalability
Ø Level 1 BLAS calls account for majority of kernel
runtime

Ø Control flow cost greater than compute cost

Discussion (Parallelism)
Ø  Strategy: Adapt existing parallel implementations

of Givens QR (e.g., those based on Sameh and
Kuck, 1978) or Householder QR

Ø Some implementations require just ~5/8 of
computational steps vs. sequential algorithms
(Kontoghiorghes, 2002 p. 1266)
Ø Effect: Decrease time cost of reforming

triangular R, decrease execution gaps
Ø Cost: Far more complex to implement

Column permutations (used
to reduce transformations
required)

Discussion (Parallelism)

Discussion (Parallelism)
Ø  Strategy: Replace column permutation with norm-

preserving change vector rotations

Ø  Patterned on Golub and Van Loan, 1996 p.
606-607

Ø  Effect: Reduced complexity

Ø R is always upper triangular (in memory)
Ø  Runtime variability is reduced

Ø  Cost: Increased flops

Discussion (Parallelism)
Ø  Rank-1 change is evaluated

Ø  Applied immediately if accepted

Ø  Contiguous accepted changes not grouped

Discussion (Parallelism)
Ø Strategy: Generalize implementation for rank-k

column update;
Ø Evaluate change submatrix
Ø Apply changes to R only after contiguous

acceptance pattern is broken

Ø Effect: Leverage likely acceptance pattern

Ø Perform block operations

Ø Cost: More complex to implement
Ø May require extensive modification to

QMCPACK

Discussion (CUDA)
Ø Improved cuBLAS Management:
Ø Share cuBLAS handles between synchronized
kernels to minimize overhead

Ø "...the recommended programming model is to create
one CUBLAS handle per thread and use that CUBLAS
handle for the entire life of the thread.”

 ~CUDA Toolkit 6.5 Documentation: cuBLAS

Ø Use cuBLAS streams to increase occupancy
Ø Up to 16 concurrent kernels are supported
(hardware dependent)

Discussion (CUDA)
Ø Decrease Memory Latency

Ø Currently, kernels are heavily latency-bound
(limited by memory access, not computation)

Ø Reduce level of pointer indirection

Works Cited
Ø Andrew, Robert, and Nicholas Dingle. "Implementing QR Factorization Updating Algorithms

on GPUs." Parallel Computing 40.7 (2014): 161-72. Web. 4 Aug. 2015. <http://
www.sciencedirect.com/science/article/pii/S0167819114000337>.

Ø  "CuBLAS :: CUDA Toolkit Documentation." CuBLAS :: CUDA Toolkit Documentation. Web. 4
Aug. 2015.

Ø Golub, Gene H., and Charles F. Loan. Matrix Computations. 3rd ed. Baltimore: Johns
Hopkins UP, 1996. Print.

Ø Kontoghiorghes, Erricos J. "Parallel Strategies for Rank- K Updating of the QR
Decomposition." SIAM. J. Matrix Anal. & Appl. SIAM Journal on Matrix Analysis and
Applications 23.3 (2000): 714-25. Web. 4 Aug. 2015. <http://epubs.siam.org/doi/pdf/10.1137/
S0895479896308585>.

Ø Kontoghiorghes, Erricos John. "Greedy Givens Algorithms for Computing the Rank-k
Updating of the QR Decomposition." Parallel Computing 28 (2002): 1257-273. Web. 4 Aug.
2015. <http://www.dcs.bbk.ac.uk/~matrix/Papers/ErricosRankk.pdf>.

Ø Padua, David A. Encyclopedia of Parallel Computing. Vol. 4. New York: Springer, 2011. Print.
Ø Sameh, A. H., and D. J. Kuck. "On Stable Parallel Linear System Solvers." Journal of the

ACM JACM J. ACM 25.1 (1978): 81-91. Web. 4 Aug. 2015. <http://dl.acm.org/citation.cfm?
id=322054>.

Ø Volkov, V., and J.w. Demmel. "Benchmarking GPUs to Tune Dense Linear Algebra." 2008 SC
- International Conference for High Performance Computing, Networking, Storage and
Analysis (2008). Web. 4 Aug. 2015. <http://mc.stanford.edu/cgi-bin/images/6/65/
SC08_Volkov_GPU.pdf>.

Acknowledgements
Ø We greatly appreciate help from our mentors:

Ø Dr. Ed D'Azevedo from ORNL
Ø Dr. Ying Wai Li from ORNL
Ø Dr. Kwai Wong from UTK

Ø NSF
Ø ORNL
Ø UTK

Exploring QR Factorization on GPU
for Quantum Monte Carlo Simulation

Tyler McDaniel
Ming Wong

Mentors: Ed D’Azevedo, Ying Wai Li, Kwai Wong

