3 Ways to Accelerate Applications

- Libraries
 - “Drop-in” Acceleration
 - CUDA Libraries are interoperable with OpenACC

- OpenACC Directives
 - Easily Accelerate Applications

- Programming Languages
 - Maximum Flexibility
3 Ways to Accelerate Applications

- Libraries
 - “Drop-in” Acceleration

- OpenACC Directives
 - Easily Accelerate Applications

- Programming Languages
 - Maximum Flexibility
 - CUDA Languages are interoperable with OpenACC, too!
GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications
CUDA Math Libraries

High performance math routines for your applications:
- cuFFT - Fast Fourier Transforms Library
- cuBLAS - Complete BLAS Library
- cuSPARSE - Sparse Matrix Library
- cuRAND - Random Number Generation (RNG) Library
- NPP - Performance Primitives for Image & Video Processing
- Thrust - Templated C++ Parallel Algorithms & Data Structures
- math.h - C99 floating-point Library

Included in the CUDA Toolkit

Free download @ www.nvidia.com/getcuda

Always more available at NVIDIA Developer site.
How To Use CUDA Libraries With OpenACC
CUDA libraries and OpenACC both operate on device arrays.

OpenACC provides mechanisms for interop with library calls:
- `deviceptr` data clause
- `host_data` construct

These same mechanisms are useful for interoperating with custom CUDA C, C++, and Fortran code.
deviceptr Data Clause

deviceptr(list) Declares that the pointers in list refer to device pointers that need not be allocated or moved between the host and device for this pointer.

Example:

C
#pragma acc data deviceptr(d_input)

Fortran
$!acc data deviceptr(d_input)
host_data Construct

Makes the address of device data available on the host.

`use_device(list)` Tells the compiler to use the device address for any variable in `list`. Variables in the list must be present in device memory due to data regions that contain this construct.

Example

C

```c
#pragma acc host_data use_device(d_input)
```

Fortran

```fortran
$!acc host_data use_device(d_input)
```
Example: 1D convolution using CUFFT

Perform convolution in frequency space

1. Use CUFFT to transform input signal and filter kernel into the frequency domain
2. Perform point-wise complex multiply and scale on transformed signal
3. Use CUFFT to transform result back into the time domain

We will perform step 2 using OpenACC

Code highlights follow. Code available with exercises in: Exercises/Cufft-acc
// Allocate host memory for the signal and filter
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
Complex *h_filter_kernel = (Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);

// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc((void **)&d_signal, mem_size));

// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));

// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(cudaMalloc((void **)&d_filter_kernel, mem_size));
// Transform signal and kernel
error = cufftExecC2C(plan, (cufftComplex *)d_signal, (cufftComplex *)d_signal, CUFFT_FORWARD);
error = cufftExecC2C(plan, (cufftComplex *)d_filter_kernel, (cufftComplex *)d_filter_kernel, CUFFT_FORWARD);

// Multiply the coefficients together and normalize the result
printf("Performing point-wise complex multiply and scale.\n");
complexPointwiseMulAndScale(new_size,(float *restrict)d_signal,(float *restrict)d_filter_kernel);

// Transform signal back
error = cufftExecC2C(plan, (cufftComplex *)d_signal,(cufftComplex *)d_signal, CUFFT_INVERSE);
void complexPointwiseMulAndScale(int n, float *restrict signal,
 float *restrict filter_kernel)
{
 // Multiply the coefficients together and normalize the result
 #pragma acc data deviceptr(signal, filter_kernel)
 {
 #pragma acc kernels loop independent
 for (int i = 0; i < n; i++) {
 float ax = signal[2*i];
 float ay = signal[2*i+1];
 float bx = filter_kernel[2*i];
 float by = filter_kernel[2*i+1];
 float s = 1.0f / n;
 float cx = s * (ax * bx - ay * by);
 float cy = s * (ax * by + ay * bx);
 signal[2*i] = cx;
 signal[2*i+1] = cy;
 }
 }
}

Note: The PGI C compiler does not currently support structs in OpenACC loops, so we cast the Complex* pointers to float* pointers and use interleaved indexing.
Linking CUFFT

- `#include "cufft.h"`
- Compiler command line options:

```
CUDA_PATH = /opt/pgi/13.10.0/linux86-64/2013/cuda/5.0
CCFLAGS = -I$(CUDA_PATH)/include -L$(CUDA_PATH)/lib64 -lcudart -lcufft
```

Must use PGI-provided CUDA toolkit paths

Must link libcuda and libcufft
Result

instr009@nid27635:~/Cufft> aprun -n 1 cufft_acc
Transforming signal cufftExecC2C
Performing point-wise complex multiply and scale.
Transforming signal back cufftExecC2C
Performing Convolution on the host and checking correctness

Signal size: 500000, filter size: 33
Total Device Convolution Time: 6.576960 ms (0.186368 for point-wise convolution)
Test PASSED
Use `deviceptr` data clause to pass pre-allocated device data to OpenACC regions and loops

Use `host_data` to get device address for pointers inside `acc data` regions

The same techniques shown here can be used to share device data between OpenACC loops and

- Your custom CUDA C/C++/Fortran/etc. device code
- Any CUDA Library that uses CUDA device pointers
Appendix

Compelling Cases For Various Libraries Of Possible Interest To You
cuFFT: Multi-dimensional FFTs

- New in CUDA 4.1
 - Flexible input & output data layouts for all transform types
 - Similar to the FFTW “Advanced Interface”
 - Eliminates extra data transposes and copies
 - API is now thread-safe & callable from multiple host threads
 - Restructured documentation to clarify data layouts

\[
F(x) = \sum_{n=0}^{N-1} f(n) e^{-j2\pi nx / N}
\]

\[
f(n) = \frac{1}{N} \sum_{x=0}^{N-1} F(x) e^{j2\pi nx / N}
\]
FFTs up to 10x Faster than MKL

1D used in audio processing and as a foundation for 2D and 3D FFTs

- Measured on sizes that are exactly powers-of-2
- cuFFT 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Performance may vary based on OS version and motherboard configuration
CUDA 4.1 optimizes 3D transforms

Single Precision All Sizes 2x2x2 to 128x128x128

Consistently faster than MKL

>3x faster than 4.0 on average

Performance may vary based on OS version and motherboard configuration
cuBLAS: Dense Linear Algebra on GPUs

- Complete BLAS implementation plus useful extensions
 - Supports all 152 standard routines for single, double, complex, and double complex

- New in CUDA 4.1
 - New batched GEMM API provides >4x speedup over MKL
 - Useful for batches of 100+ small matrices from 4x4 to 128x128
 - 5%-10% performance improvement to large GEMMs
cuBLAS Level 3 Performance

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL

Performance may vary based on OS version and motherboard configuration.

- 4Kx4K matrix size
- cuBLAS 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
ZGEMM Performance vs Intel MKL

Graph showing the performance comparison between CUBLAS-Zgemm and MKL-Zgemm for different matrix sizes (NxN).

- CUBLAS-Zgemm line starts from the origin and rises sharply, indicating high performance for small matrix sizes, followed by a plateau.
- MKL-Zgemm line starts from the origin and rises gradually, indicating lower performance compared to CUBLAS for small matrix sizes, but maintains a steady rate of increase.

Matrix Size (NxN)

GFLOPS

Performance may vary based on OS version and motherboard configuration.

- cuBLAS 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
cuBLAS Batched GEMM API improves performance on batches of small matrices

Performance may vary based on OS version and motherboard configuration

- cuBLAS 4.1 on Tesla M2090, ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
cuSPARSE: Sparse linear algebra routines

- Sparse matrix-vector multiplication & triangular solve
 - APIs optimized for iterative methods
- New in 4.1
 - Tri-diagonal solver with speedups up to 10x over Intel MKL
 - ELL-HYB format offers 2x faster matrix-vector multiplication

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\end{bmatrix}
= \alpha
\begin{bmatrix}
1.0 & \cdots & \cdots & \cdots \\
2.0 & 3.0 & \cdots & \cdots \\
\vdots & \vdots & 4.0 & \cdots \\
5.0 & \cdots & 6.0 & 7.0 \\
\end{bmatrix}
\begin{bmatrix}
1.0 \\
2.0 \\
3.0 \\
4.0 \\
\end{bmatrix}
+ \beta
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\end{bmatrix}
\]
cuSPARSE is >6x Faster than Intel MKL

Sparse Matrix x Dense Vector Performance

*Average speedup over single, double, single complex & double-complex

Performance may vary based on OS version and motherboard configuration

*cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on
• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core
Up to 40x faster with 6 CSR Vectors

cuSPARSE Sparse Matrix x 6 Dense Vectors (csrmm)
Useful for block iterative solve schemes

Performance may vary based on OS version and motherboard configuration.
Tri-diagonal solver performance vs. MKL

Speedup for Tri-Diagonal solver (gtsv)*

- single
- double
- complex
- double complex

*Parallel GPU implementation does not include pivoting

Performance may vary based on OS version and motherboard configuration

- cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core
cuRAND: Random Number Generation

- Pseudo- and Quasi-RNGs
- Supports several output distributions
- Statistical test results reported in documentation

New commonly used RNGs in CUDA 4.1
- MRG32k3a RNG
- MTGP11213 Mersenne Twister RNG
cuRAND Performance compared to Intel MKL

Double Precision Uniform Distribution

- CURAND XORWOW
- CURAND MRG32k3a
- CURAND MTGP32
- CURAND 32 Bit Sobol
- CURAND 32 Bit Scrambled Sobol
- CURAND 64 Bit Sobol
- CURAND 64 bit Scrambled Sobol
- MKL MRG32k3a
- MKL 32 Bit Sobol

Double Precision Normal Distribution

- CURAND XORWOW
- CURAND MRG32k3a
- CURAND MTGP32
- CURAND 32 Bit Sobol
- CURAND 32 Bit Scrambled Sobol
- CURAND 64 Bit Sobol
- CURAND 64 bit Scrambled Sobol
- MKL MRG32k3a
- MKL 32 Bit Sobol

Performance may vary based on OS version and motherboard configuration

- cuRAND 4.1, Tesla M2090 (Fermi), ECC
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 @