Parallel Tempering Algorithm in Monte Carlo Simulation

Tony Cheung (CUHK)
Kevin Zhao (CUHK)

Mentors:
Ying Wai Li (ORNL)
Markus Eisenbach (ORNL)
Kwai Wong (UTK/ORNL)
Metropolis Algorithm on Ising Model

- Reason: difficulty of direct sampling
- Objective: compute average physical quantities of interest
- Idea: generate microstates according to Boltzmann distribution (canonical ensemble) after sufficient number of steps
- Boltzmann distribution: $P(s; T) = \frac{\exp(-\beta E_s)}{Z}$, $\beta = \frac{1}{KT}$
- Underlying principle: detailed balance
Metropolis Algorithm on Ising Model

• Simulation process
 1. Randomly initialize the model
 2. Choose a spin at random & make a trial flip
 3. Accept the flip with probability

\[P_{flip} = \min\{1, \exp(-\beta \Delta E)\}, \beta = \frac{1}{KT} \]

 4. If the flip is accepted, determine the desired physical quantities
 5. Repeat steps 2-4 to obtain a sufficient number of microstates
 6. Calculate the ensemble average of quantities
Parallel Tempering

• Recall: \(P_{\text{flip}} = \min\{1, \exp(-\beta \Delta E)\}, \beta = \frac{1}{KT} \)

• Drawback: Low temperature
 ➞ Unlikely to accept flips with positive energy difference
 ➞ Trapped in energy local minimum

• Motivation: Run Metropolis algorithm on different temperatures & allow exchange of microstates
 ➞ High-temperature configuration at low-temperature system

• The probability of accepting an exchange is given by
 \(P_{\text{exchange}} = \min\{1, \exp(\Delta \beta \Delta E)\} \)
Temperature dependence of mean magnetization per spin with various replica exchange frequency

\[N = \# \text{ of replica exchange} \]

Total \# of MC steps fixed to be \(10^9\); equilibration time set to \(10^9\)
Temperature dependence of mean magnetization per spin with various replica exchange frequency

$N =$ # of replica exchange
Total # of MC steps fixed to be 10^9; equilibration time set to 10^9
Temperature dependence of mean magnetization per spin with various replica exchange frequency

$N =$ # of replica exchange

Total # of MC steps fixed to be 10^9; equilibration time set to 10^9
Temperature dependence of mean magnetization per spin with various replica exchange frequency

$N = \# \text{ of replica exchange}$

Total # of MC steps fixed to be 10^9; equilibration time set to 10^9
Temperature dependence of mean magnetization per spin with various replica exchange frequency

$N = \# \text{ of replica exchange}$

Total # of MC steps fixed to be 10^9; equilibration time set to 10^9
Temperature dependence of mean magnetization per spin with various replica exchange frequency

$N =$ # of replica exchange

Total # of MC steps fixed to be 10^9; equilibration time set to 10^9

Mean Magnetization Per Spin

Temperature
Temperature dependence of energy fluctuation (SD) with various replica exchange frequency

$N = \# \text{ of replica exchange}$

Total # of MC steps fixed to be 10^9; equilibration time set to 10^9
Temperature dependence of energy fluctuation (SD) with various replica exchange frequency

\[N = \text{# of replica exchange} \]

Total # of MC steps fixed to be 10^9; equilibration time set to 10^9
Temperature dependence of energy fluctuation (SD) with various replica exchange frequency

\(N = \# \text{ of replica exchange} \)

Total \# of MC steps fixed to be \(10^9 \); equilibration time set to \(10^9 \)
Running Time Dependence on # of Replica Exchanges

Monte Carlo Simulation takes up most of the time, while Parallel tempering is becoming the dominant factor.
Coming soon

• Parallel tempering Metropolis running with:
 – Various temperature spacing (# of processors)
 – Different exchange patterns
 – Geometric temperature sequence

• Implementation on other models

• Goal: optimize the algorithm
 – Better convergence with less time
 – Self adjusting algorithms