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Preliminary

Abstract

A program has been written in C to simulate various physical models using
the Metropolis-Hastings algorithm. Through experiments ! with different
parameters, the temperature dependence analysis of magnetization, Hamiltonian,
magnetic suscpetibility and heat capacity of the models is performed.
Convergence of the algorithm with parallel tempering and adaptive temperature
spacing schemes is analyzed and compared.

Structure

The chief of the program contains a makefile, 3 C files and 2 header files:

makefile

main.c

core neighboring.c core neighboring.h
rng init.c rng _init.h

The program also consists of 4 directories, namely Ising 2d, Ising 3d,
Nvct 2d and Nvct 3d. Each directory corresponds to a physical model and
consists of an input file, 6 C files and 7 header files:

file.in

include.h
input.c input.h
initialize.c initialize.h
data.c data.h
calculation.c calculation.h
sampling.c sampling.h
output.c output.h

The whole process is managed by main.c, which drives
core neighboring.c to do the simulation with MPT functions.

Firstly, an executable file is constucted through compilation by the makefile
with user-specified environments. The executable file finds the corresponding
directory, inside which the input file file. inis read by input . c in the master
node and the all the input information is stored as a structure.

1 All experiments were conducted on the supercomputer Kraken XT5 in Cray Linux Environment 3.1,
located in Oak Ridge National Laboratory, Tennessee, United States.



The structure is then sent to all processors. In each processor the structure is
read by initialize.c for initialization, and rng init.c initializes the
random number generator with a distinct random seed.

The Metropolis-Hastings algorithm is carried out by recursive equilibration
steps and sampling steps, during which data.c records the samples,
calculation.c does all the mathematical calculations and sampling.c
determines probabilistic moves.

After the completion of the simulation, results are stored as a structure and
gathered by the master node. They are then printed by running output. c in the
master node.

How to use

The user should first link the header file include.h of the model in interest
in core neighboring.c, and then specify the model and the machine used in
the makefile. The user should add any neccssary flags for a new machine in
the makefile and make sure the GNU Scientic Library is linked. Typing in the
make clean and make commands successively creates the corresponding
executable file.

The user can specify parameters in the input file file.in in the

corresponding directory. Parameters include:
Vector Dimension n (Only for Nvct_2d and Nvct_3d)
Grid length
Interaction strength ]
Boltzmann constant kg
Temperature pattern (1 for arithmetic, 2 for geometric)
Minimum temperature
Maximum temperature
Number of equilibration steps between successive exchanges
Number of exchanges between successive spacing adjustments
Number of adaptive temperature spacing adjustments
Adaptive temperature spacing adjustments aggressiveness
Number of sampling steps between successive exchanges
Number of exchanges in sampling time
Random seed

Running the executable file with a certain number of processors does the
simulation. Output is generated and printed.



Chapter O

Overview

0.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are used for sampling from a
certain probability distribution and calculating quantities of interest such as
mean and variance. They are particularly useful when direct sampling is difficult.

The idea of Markov chain is to construct a Markov chain whose stationary
distribution is set to be the target probability distribution ! . After going through
a sufficient number of equilibration steps, states generated approximately follow
the target distribution, and samples are taken to perform parameter estimation
by Bayesian inference. The underlying principle is to design a certain transition

probability P to strike the detailed balance condition:
Forlany x!yle!S, m(x)! (111) 1 L)t

0.2 n-vector model

The n-vector model is a mathematical model to study ferromagnetism in
statisical mechanics. It can also be applied to study various fields such as lattice
gas and neuroscience.

The n-vector model begins with a lattice, square in shape for the 2-D model
and cube in shape for the 3-D model. In each position of the lattice sits a
microstate, which is a magnetized spin pointing in a n-dimensional unit sphere.
For n > 2, the model possesses a continum of states even the lattice has finitely
many positions.

Dimension n Name of model
1 Ising model
2 XY model
3 Heisenberg model
4 Standard model

Table 0.1: Names of models for different dimension n
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Figure 0.1: A particular state of a 4x! 2-D Ising model

The spins interact with each other accordingly. For simplicity it is assumed
that only nearest neighbors interact. The periodic boundary condition is
employed, i.e. each spin on an edge of the lattice has a neighbor on the opposite
edge.

The magnetization M and the Hamiltonian function H for representing the
enrgy of a state o are given by:
L () z ¥
[

F@)! !!z!””!!!!!

where !, is the microstate in position i, and <i, j> means the sum over nearest
neighbors. The interaction strength ] is positive for a ferromagnetic model such
that the spins tend to be like parallel in the ground state.

The states of the models follow the Boltzmann distribution, the canonical
ensemble for systems taking discrete values of energy and the most common
ensemble in statistical mechanics. The Boltzmann distribution at temperature T

is formulated as:
| —BH(0) 1
P(0;T) = ———; 1B = —
@D =—Za ¥ =17

where kg is the Boltzmann constant and Z(T) is the normalizing constant which
is of high difficulty of calculation.
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Fig 0.2: Frequency versus energy of the Boltzmann distribution at different temperatures




Chapter 1
Metropolis -Hastings  Algorithm

1.1 Introduction

Metropolis-Hastings algorithm is a MCMC method to simulate the Boltzmann
distribution. It is employed as the fundamental of this research project. The flow
is as follows:

1) Generate an initial state randomly.
2) Go through an equilibration time, during which at each step:
i. Choose a spin randomly and propose a flip on it.
ii. Accept the flip with a probability Paip:
Accept = MC goes to the new state.
Reject =» MC retains the original state.
3) Go through a sampling time, during which at each step:
i. Choose a spin randomly and propose a flip on it.
ii. Accept the flip with a probability Paip:
Accept = MC goes to the new state and a sample is taken.
Reject =» MC retains the original state.
4) Calculate the average quantities of interest:

. ) _ IR
Mean magnetization per spin 1l = TR
. . . DRI
P
Mean Hamiltonian per spin o e T e
Pnn<pmZrnn ot
. S L1
Magnetic susceptibility b e i rasvear 1 11
. Lro rno oty by
Heat capacity U 0 SR 1 1
. . . I 1"#$%&!
I AP
Acceptance ratio for sampling time !, #S s IS

It is obvious that the sequence of random variables is Markovian. The
Metropolis-Hastings algorithm suggests the acceptance probability Paip to be

! N INIRRREN

I"#$

where !! is the Hamiltonian difference of the flip. It can easily be shown that
the resultant Markov chain possesses the detailed balance condition and
ergodicity with a unique stationary distribution as the Boltzmann distribution.



1.2  ExperimentI: serial Metropolis-Hastings algorithm

The objective of this experiment is to calculate the quantities of interest with
serial Metropolis-Hastings algorithm. The set up is as follows:

Model 2D Ising
Grid length 100
Interaction strength ] 1.00
Boltzmann constant kg 1.00
Temperature pattern Arithmetic
Minimum temperature 0.50
Maximum temperature 5.00

# processors 96

# equilibration steps 10°

# sampling steps 10°
Random seed 888

Table 1.1: Set up for Experiment I

Each of the nodes was made to run a distinct temperature system and the
results were put altogether as follows:
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Figure 1.1: Mean magnetization per spin versus temperature
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Figure 1.2: Mean Hamiltonian per spin versus temperature
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Figure 1.3: Magnetic susceptibility versus temperature
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Figure 1.5: Acceptance ratio for sampling time versus temperature

Alocal, smooth and dramatic change of each of the quantities takes place
near the phase transition T. at which kgT. ! 2.3].

The highly-oscillated curves, particularly unstable at low temperatures, in
figures 1.1, 1.3 and 1.4 look wierd. Figure 1.5 shows that the acceptance ratios
for sampling time are very close to 0 at low temperatures. This suggests that the
sampling at low temperatures are biased and need to be improved.



Chapter 2

Replica Exchange

2.1 Drawback of Metropolis-Hastings algorithm

Recall the acceptance probability Pai, of the Metropolis-Hastings algorithm is
given by:

Lgg 11 {100 L0 !%

For low temperatures, ! ! ! isavery large positive number. If we propose a
flip with positive energy difference,i.e. !'! ! !, we have:
N O N O S S B N B Iy By

On the contrary, if we propose a flip with negative energy difference,ie. !'! ! 1,
we have:

O O L | P By

It is very likely to go through successive flips with negative energy difference,
forcing the system to visit an energy minimum and be trapped around the state.
Consequently it is impossible to generate states according to the Boltzmann
distribution, resulting in biased sampling.

2.2 Idea of parallel tempering

Parallel tempering serves to improve convergence of Metropolis-Hastings
algorithm in the problem discussed in the last section. A number of systems
initialized with distinct temperatures run Metropolis-Hastings algorithm and
exchanges of configurations are allowed during the sampling time.

The reason of doing so is to allow configurations at high temperatures to be
trasferred to systems with low temperatures as the simulation process goes on,
and rescue low temperature from being trapped at undesirable stable states with
energy minimum.

10



2.3 Flow of parallel tempering

The flow of parallel tempering for Metropolis-Hastings algorithm on each
temperature system is as follows:
1) Generate an initial state randomly.
2) Go through an equilibration time, during which at each step:
i. Choose a spin randomly and propose a flip on it.
ii. Accept the flip with a probability Paip:
Accept = MC goes to the new state.
Reject =» MC retains the original state.
3) Go through a sampling time partitioned by exchange periods, during
which within an exchange period:
i. Go through the period of a certain amount of recursive
sampling steps by:
a) Choose a spin randomly and propose a flip on it.
b) Accept the flip with a probability Paip:
Accept = MC goes to the new state and a sample is taken.
Reject =» MC retains the original state.
ii. At an exchange process:
a) Propose a configuration exchange with the systems having
the closest temperature alternatively.
b) Accept the exchange with a probability Pexchange.

L R IR

where !" and !" are the difference in ! and
Hamiltonian respectively.
4) Calculate the average quantities of interest.

111ty

Figure 2.1: Metropolis-Hastings algorithm is now run on a number of processors among which exchanges of

configurations are allowed between neighboring temperatures alternatively during sampling time

11



2.4 ExperimentIl: parallel Metropolis-Hastings algorithm

The objective of this experiment is to compare the convergence of
Metropolis-Hastings algorthm with and without parallel tempering. The set up is

as follows:
Model 2D Ising
Grid length 100
Interaction strength ] 1.00
Boltzmann constant kg 1.00
Temperature pattern Arithmetic
Minimum temperature 0.50
Maximum temperature 5.00
# processors 96
# equilibration steps 10°

# sampling steps between succssive exchanges
# exchanges in sampling time

Random seed

10° 107 10> 10
0 102 10* 108
888

Table 2.1: Set up for Experiment II

The total number of sampling steps is fixed at 107, in which different number
of evenly distributed replica exchanges are inserted to see the functionality of
parallel tempering. Results are as follows:
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Figure 2.2: Mean magnetization per spin versus temperature at different number of exchanges
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Figure 2.3: Mean Hamiltonian per spin versus temperature at different number of exchanges
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Figure 2.4: Magnetic susceptibility versus temperature at different number of exchanges
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Figure 2.5: Heat capacity versus temperature at different number of exchanges

As shown in figures 2.2 and 2.3, when the number of exchanges increases,
perfectly smooth curves is resulted and the convergence of first moments is well
seen eventually.

In particular figure 2.2 shows a clear picture of effects of parallel tempering:
as parallel tempering is introduced, the badly behaved systems perform better
and the smoothness of the curve increases with the number of exchanges.
However the well behaved systems are embroiled, because the energy minima
are shared among and affect sampling for systems in the low-temperature range.
As the number of exchanges is larger, the energy minima are transferred to
systems in the high-temperature range more often, increasing the quality of
sampling for those in the low-temperature range.

Figures 2.4 and 2.5 show that despite the second moments converge much
better eventually with 108 exchanges, there are still slight instatbility. Moreover
when an insufficient number of exchanges are introduced, the second moments
are more chaotic, believed to be a joint result of low acceptance ratio at some
systems, and samples are largely different before and after parallel tempering
indeed works effectively. Some possible modifications are to increase the density
of replica exchanges and the number of sampling steps. But these would
dramatically increase the running time. For the purpose of having better
convergence with limited computer resources, adjustments are to be made to the
equilibration time to ensure the systems are fully equilibrated and earlier
samples also follow the Boltzmann distribution.

14



2.5 Replica exchanges during equilibration

To make sure earlier samples are generated according to the Boltzmann
distribution, replica exchanges are inserted into equilibration time as follows:
1) Generate an initial state randomly.
2) Go through a sampling time partitioned by exchange periods, during
which within an exchange period:
i. Go through the period of a certain amount of recursive
sampling steps by:
a) Choose a spin randomly and propose a flip on it.
b) Accept the flip with a probability Paip:
Accept = MC goes to the new state.
Reject = MC retains the original state.
ii. At an exchange process:
a) Propose a configuration exchange with the systems having
the closest temperature alternatively.
b) Accept the exchange with a probability Pexchange.
3) Go through a sampling time partitioned by exchange periods, during
which within an exchange period:
i. Go through the period of a certain amount of recursive
sampling steps by:
a) Choose a spin randomly and propose a flip on it.
b) Accept the flip with a probability Paip:
Accept = MC goes to the new state and a sample is taken.
Reject = MC retains the original state.
ii. At an exchange process:
a) Propose a configuration exchange with the systems having
the closest temperature alternatively.
b) Accept the exchange with a probability Pexchange.
4) Calculate the average quantities of interest.

iy

Figure 2.6: Replica exchanges are now inseted into both equilibration time and sampling time
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2.6 ExperimentIlI: parallel equilibration

The objective of this experiment is to compare the convergence of second
moments of parallel tempering for Metropolis-Hastings algorthm with and
without parallel equilibration. The set up is as follows:

Model 2D Ising

Grid length 100

Interaction strength ] 1.00

Boltzmann constant kg 1.00
Temperature pattern Arithmetic
Minimum temperature 0.50

Maximum temperature 5.00

# processors 96

# equilibration steps between successive exchanges 108 104
# exchanges in equilibration time 0 104
# sampling steps between succssive exchanges 105

# exchanges in sampling time 104

Random seed 888

Table 2.2: Set up for Experiment III

The total number of equilibration steps is fixed at 108, in which trials differ
in whether evenly distributed replica exchanges are inserted to see the
functionality. Results are as follows:
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Figure 2.7: Magnetic susceptibility versus temperature with serial and parallel equilibration
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Figure 2.8: Magnetic susceptibility versus temperature with serial and parallel equilibration in logarithmic
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Figure 2.9: Heat capacity versus temperature with serial and parallel equilibration

As shown in figures 2.7 - 2.9, parallel equilibration gives a much better
convergence in second moments than serial equilibration with same numbers of
total equlibration steps and total sampling steps.

Compared with the results of the best converged ordinary parallel tempering
case with 10° serial equilibration steps and 10° parallel sampling sleps in which
108 exchanges take place in Experiment II, the parallel equilibration case with
smaller numbers of total exchanges and total steps in this experiment still
converges considerably better and with a much shorter time.
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Figure 2.10: Magnetic susceptibility converges better in parallel equilibration than in ordinary parallel

tempering with smaller numbers of total exchanges and total steps
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Figure 2.11: Required time is much shorter for parallel equilibration than ordinary parallel tempering to

give a better convergence in second moments
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Chapter 3

Analysis on Temperature Spacings

3.1 Optimal temperature pattern

As parallel tempering is introduced, there is an additional quantity of
interest:

# accepted exc! "#3$%
I I#I#S%& 1"# | 1"#$%

Acceptance ratio for exchanges ! . .n =

This quantity is different for each pair of temperature system. Past researches
have pointed out that parallel tempering is most efficient when the acceptance
ratios for exchanges in all system pairs are equal in sampling time. It is observed
that for each of the experiments on 2D Ising model carried out so far, the
exchange ratios for system pairs around the phase transition are much lower
(which will be seen not universally true for all models in Chapter 4).

This motivates us to find the optimal temperature pattern which gives a
constant acceptance ratio for exchanges, allowing us to further reduce the
computational cost especially for problems of large lattices which are in general
more difficult to be equilibrated as well as exchanged.
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Figure 3.1: Acceptance ratios for exchanges versus temperature in parallel equilibration in Experiment III
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3.2 Adaptive temperature spacing scheme

Considering the huge replica exchange difficulty throughout the temperature
range, we are motivated to readjust temperature spacing adaptively according to
the replica exchange acceptance ratio, setting a readjustment point after every
certain amount of replica exchanges (i.e. after we obtain large enough sample of
exchange acceptance ratio measurement).

The adaptive adjustment scheme goes as follows:

At every adjustment point, the density function is evaluated using

[
L (Vg ) ! '
(ras Py (g ) 1]
where ! (!4 ) is the exchange acceptance ratio of the temperature pair

involving temperature with rank !4 as the lower rank in the pair.

C is a constant specified by user, which will be later called !"#$%&'()&*
+,)%&!&larger ! leads to smoother density function, resulting in a less
aggressive temperature spacing scheme.

After we have the density function at every temperature rank, we interpolate
using piecewise constant function, which will be later used for determining new
temperature points.

The initiative is to allow denser temperature points located at places where
acceptance ratio is low (i.e. density function has high values). The new
temperature spacing, therefore, is determined by finding T/%" such that

| I .

ﬁ!"%! (1ds ! I||||L$|jl
|

Now that there must exist valid ranks ! and suchthat !'! lui ! Il I, we

can readjust temperature by

by D 1

!! o

| *

I"#
DOILEE D, )

FI'H$
*

This scheme has shown stability when the adaptive constant is chosen to be
large enough, according to different models we run tests on.
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