





## **EEG-Based BCI Cursor Control**

An application with Convolutional Neural Networks and Recurrent Neural Networks

Haoqi WANG, Jing WU Mentor: Dr. Xiaopeng ZHAO, Soheil BORHANI

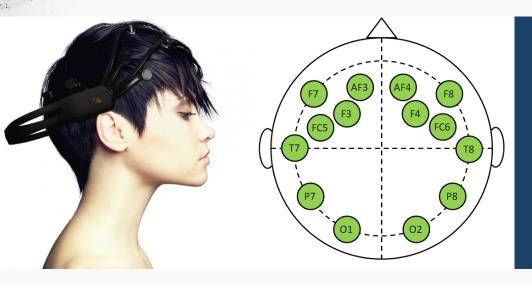






事業 創新 胸懷全球 Professional・Creative For The World





III EEG

EEG refers to the recording of the brain's spontaneous electrical activity over a period of time, as recorded from multiple electrodes placed on the scalp.

#### BCI

Brain–computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts.

**Invasive** BCI systems acquire neural signals with intracranial or subdural electrodes, while **noninvasive** BCI systems typically acquire neural signals with scalp electroencephalography (EEG)



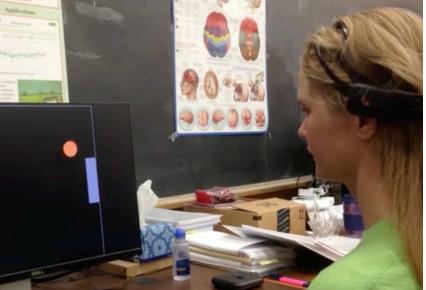
#### **Related Study**

In previous study, a decoder model of Multiple Linear Regression was used to predict the velocity of the computer cursor from EEG.

### **Experiment Setup**

The computer cursor was programmed to move in one dimension(Horizontal/Vertical). The subjects were asked to track the moving cursor on the screen by imaging that they were using their dominant hand to control the cursor moving the same way as it was on the screen.

In the mean time, the EEG signal is recorded wirelessly with Emotiv EPOC headset of 14 channels. The headset with hydrated electrodes was put on the scalp of the subject. Meanwhile, TestBench, a Emotiv software was used to ensure the signal quality during the recording process. 14 channel EEG data and cursor movement were recorded simultaneously at a sample rate of 128Hz.





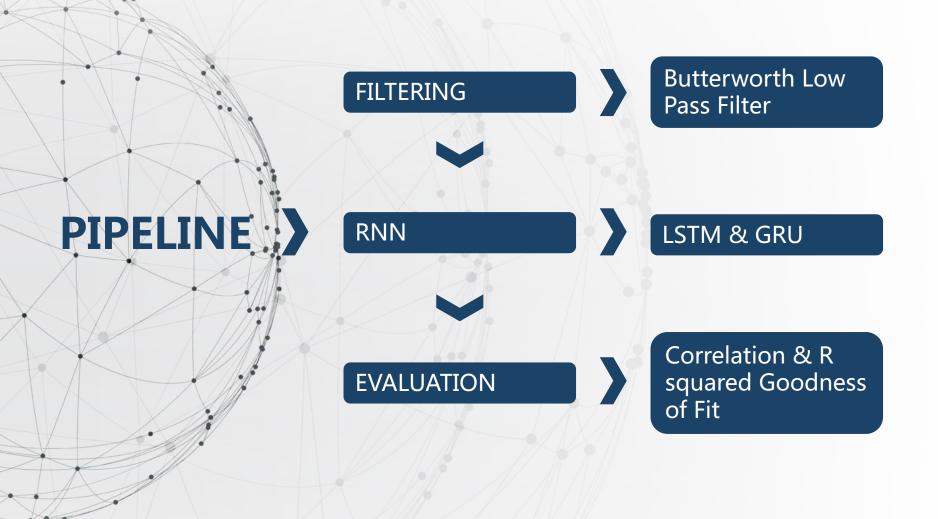
34 subjects; 2 orientation/subject; 5 trials/orientation;

## **Cursor Movement**

Measured by a vector

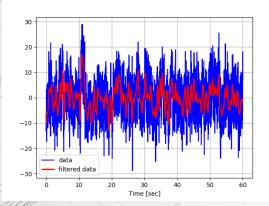
Magnitude: RNN regression Orientation: CNN classification

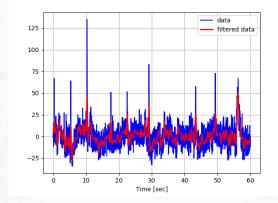
## TASK A REGRESSION



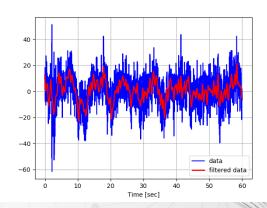
## **FILTERING**

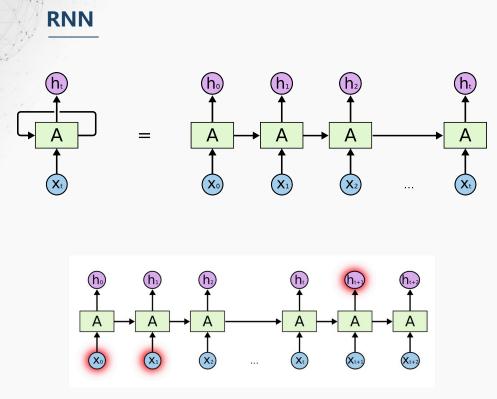
**The Butterworth filter** is a type of signal processing filter designed to have a frequency response as flat as possible in the passband. The main purpose of applying a low pass filter is to reduce the high frequency fluctuations for more smooth input signal of the neural network. According to some literature, the EEG signal under 2Hz has a close relation with the cursor control.





| # Filter arguments.                                        |  |
|------------------------------------------------------------|--|
| order = 4                                                  |  |
| fs = 128 # sample rate, Hz                                 |  |
| <pre>cutoff = 2 # cutoff frequency of the filter, Hz</pre> |  |
| T = 60.0 # seconds                                         |  |
| <pre>n = int(T * fs) # total number of samples</pre>       |  |
|                                                            |  |



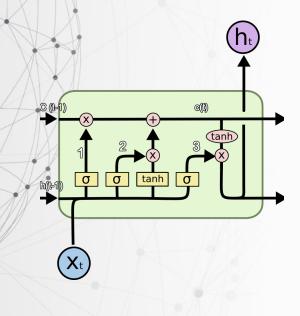


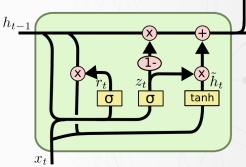
#### A recurrent neural network

(RNN) is a class of artificial neural network where connections between nodes form a directed graph along a sequence. This allows it to exhibit dynamic temporal behavior for a time sequence. Unlike feedforward neural networks, RNNs can use their internal state (memory) to process sequences of inputs. This makes them applicable to tasks in this experiment since our input data is a sequence of time.

## **LSTM vs GRU**

The LSTM model is composed of LSTM units which have cells, input gates, output gates and forget gates. The GRU consists of update gates and reset gates. In this project, they are of similar performance result.



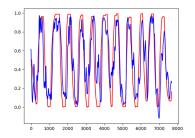


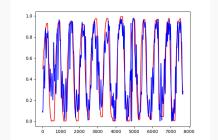
## **Cross Validation**

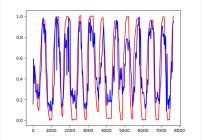
Leave One Out cross validation method is used to prevent the model over fitting problem. Since there are five trails for each regression model, one trail was left out for validation while the other four trails were for training. Therefore, five models are generated according to five different training and testing combinations.

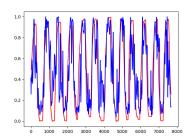


### Horizontal

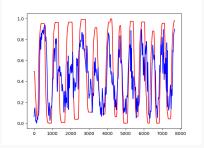


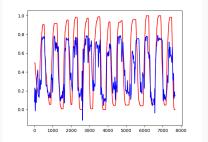


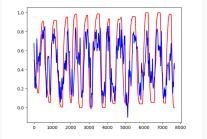


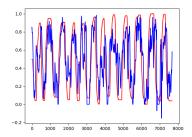


Vertical











The models were evaluated using two types of score called Goodness-of-Fit (GoF). This scoring technique separated the trial into segments of 5 seconds. The first type is to average the Pearson correla- tion scores between the predicted and ac- tual cursor velocities. Then, the averaged value of the Pearson correlation scores over each trial was defined as the GoF. The second type is to average the R squared value scores between the predicted and actual cursor velocities. These methods can provide a better representation of fit by not allowing one improperly fit window to reduce the overall models score.

Correlation Goodness of Fit Score: 
$$GoF_1 = \frac{1}{M} \sum_{i=1}^{M} Corr(V_{decoded}^i, V_{observed}^i)$$

R squared Goodness of Fit Score:

$$GoF_2 = \frac{1}{M} \sum_{i=1}^{M} R^2(V_{decoded}^i, V_{observed}^i)$$

|           | Run1       | Run2       | Run3       | Run4       | Run5       |
|-----------|------------|------------|------------|------------|------------|
| subject1  | 0.50766366 | 0.64512496 | 0.61166563 | 0.58728453 | 0.69603025 |
| subject2  | 0.08507769 | 0.2638802  | -0.113182  | -0.3842724 | -0.1433992 |
| subject3  | 0.34572155 | 0.2148576  | 0.07895965 | 0.20209551 | 0.40207659 |
| subject4  | 0.49666897 | 0.52799297 | 0.45608423 | 0.49052988 | 0.50824087 |
| subject5  | 0.46289468 | 0.18884032 | 0.71573085 | 0.1566184  | 0.27271921 |
| subject6  | 0.66520578 | 0.71182724 | 0.73367876 | 0.69218537 | 0.84254325 |
| subject7  | 0.75455727 | 0.64478183 | 0.78563624 | 0.79321395 | 0.81588211 |
| subject8  | 0.60086354 | 0.56205967 | 0.6747443  | 0.72968948 | 0.63696507 |
| subject9  | 0.58435528 | 0.58255071 | 0.62942517 | 0.47261191 | 0.7585664  |
| subject10 | 0.35248094 | 0.19871911 | 0.17434969 | 0.35792352 | 0.49773695 |
| subject11 | 0.1389093  | 0.00234993 | 0.15135268 | 0.5617493  | 0.62065569 |
| subject12 | 0.41188501 | 0.45120455 | 0.481525   | 0.50031873 | 0.70758665 |
| subject13 | 0.66366788 | 0.69452078 | 0.7439891  | 0.70459441 | 0.67387979 |
| subject14 | 0.57211102 | 0.62093893 | 0.52665561 | 0.64229876 | 0.58034485 |
| subject15 | 0.24171167 | -0.0415362 | 0.20312596 | 0.03093479 | 0.23648607 |
| subject16 | 0.03098635 | -0.0717127 | -0.0081039 | -0.0329113 | -0.1108109 |
| subject17 | 0.45581892 | 0.71802318 | 0.69034734 | 0.72862916 | 0.76213866 |
| subject18 | 0.02220374 | -0.0812381 | -0.1121656 | 0.27003718 | -0.1072684 |
| subject19 | 0.46220968 | 0.41256495 | 0.48282179 | 0.23070115 | 0.04608949 |
| subject20 | -0.0173909 | -0.0549314 | -0.0475847 | 0.05991706 | 0.0274714  |
| subject21 | 0.4797889  | 0.55080388 | 0.59067602 | 0.73404319 | 0.82445002 |
| subject22 | 0.56237856 | 0.59571952 | 0.5692891  | 0.78121702 | 0.46910826 |
| subject23 | 0.11787857 | -0.0586053 | -0.1314836 | 0.48557939 | 0.48398752 |
| subject24 | 0.23005666 | 0.02109972 | -0.1570638 | -0.0517793 | 0.04306263 |
| subject25 | 0.80454375 | 0.79007072 | 0.71276072 | 0.79860442 | 0.74019998 |
| subject26 | -0.1266298 | -0.0247938 | 0.01070082 | -0.118654  | -0.0262573 |
| subject27 | 0.49360704 | 0.31858663 | 0.54608756 | 0.71307273 | 0.53715279 |
| subject28 | 0.78764647 | 0.48650974 | 0.71381918 | 0.67882497 | 0.63465288 |
| subject29 | 0.13819644 | 0.37453564 | 0.69017207 | 0.08402667 | 0.46011937 |
| subject30 | 0.41744113 | 0.43064542 | 0.65938577 | 0.74423582 | 0.57482018 |
| subject31 | 0.65296312 | 0.70525362 | 0.67656091 | 0.73426094 | 0.73166589 |
| subject32 | 0.47027693 | 0.09430701 | 0.55261385 | 0.69652091 | 0.71460414 |
| subject33 | 0.58854287 | 0.55842894 | 0.52464844 | 0.0096614  | 0.22805586 |
| subject34 | 0.60114025 | 0.37164907 | 0.25439529 | 0.43048829 | 0.61056891 |

LSTM

Best score: 0.8425

LSTM Vertical

Correlation

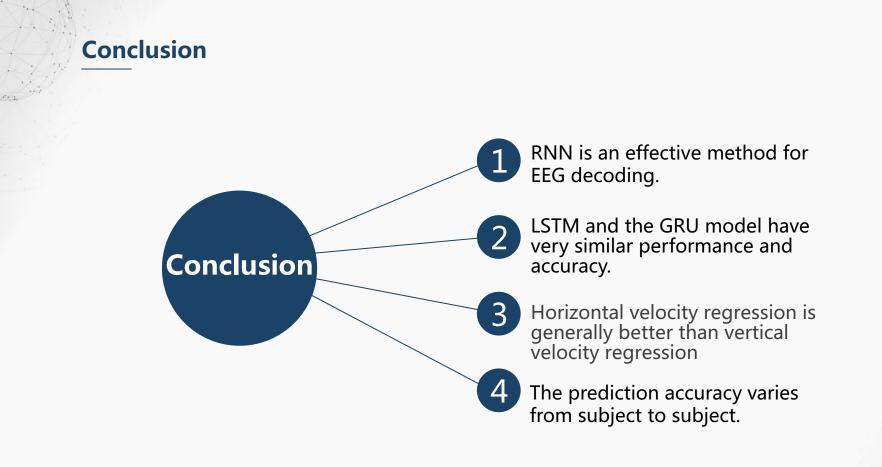
Best score: 0.7695

Horizontal Correlation

|           | Run1       | Run2       | Run3       | Run4       | Run5       |   |
|-----------|------------|------------|------------|------------|------------|---|
| subject1  | 0.18505074 | -0.0423576 | 0.11134406 | 0.05963649 | 0.02652203 |   |
| subject2  | -0.0863451 | 0.04469344 | 0.17962893 | -0.1504774 | 0.23380085 |   |
| subject3  | 0.40883314 | 0.39351921 | 0.35512852 | 0.38725501 | 0.28276712 |   |
| subject4  | 0.0824757  | 0.10637813 | 0.2466645  | 0.18794468 | 0.30051072 |   |
| subject5  | 0.11117085 | 0.19377716 | 0.19437758 | 0.41560192 | -0.0388267 |   |
| subject6  | 0.31159573 | 0.22728567 | 0.35365928 | 0.40096705 | 0.34667411 |   |
| subject7  | 0.45856755 | 0.51663731 | 0.69208078 | 0.59077011 | 0.35682059 |   |
| subject8  | 0.02370695 | 0.02453002 | 0.02646202 | 0.10996054 | 0.13682753 |   |
| subject9  | 0.41999514 | 0.34272215 | 0.26813713 | 0.21966507 | 0.3946416  |   |
| subject10 | -0.1598008 | 0.07971421 | 0.18060727 | 0.13038102 | 0.08624144 |   |
| subject11 | 0.04286716 | 0.15530748 | 0.08196272 | -0.031257  | 0.00376222 |   |
| subject12 | 0.13029792 | 0.10851208 | 0.16139014 | 0.27754349 | 0.01737465 |   |
| subject13 | 0.62464297 | 0.38673639 | 0.40891341 | 0.1076267  | 0.20106618 |   |
| subject14 | 0.50368758 | 0.63718989 | 0.64013858 | 0.60374182 | 0.67260799 |   |
| subject15 | 0.3716616  | 0.35619257 | 0.38961436 | 0.07886109 | 0.12769529 |   |
| subject16 | 0.21852468 | -0.1131208 | -0.0773546 | -0.0416004 | -0.2473735 |   |
| subject17 | 0.21774177 | 0.29169703 | 0.35853269 | 0.42912166 | 0.33976902 |   |
| subject18 | 0.18576636 | 0.15763833 | -0.0371485 | -0.0288132 | -0.1512133 |   |
| subject19 | 0.70626452 | 0.41059004 | 0.43050469 | 0.52986638 | 0.54269504 |   |
| subject20 | 0.24868696 | 0.08952156 | 0.25309592 | 0.15282968 | -0.1211243 |   |
| subject21 | -0.0878669 | -0.256299  | 0.1619595  | 0.20086652 | 0.3014165  |   |
| subject22 | 0.45106672 | 0.16181494 | 0.52729463 | 0.48268159 | 0.64979381 |   |
| subject23 | -0.0200612 | 0.1212714  | 0.30441041 | 0.20990383 | 0.08568964 |   |
| subject24 | 0.04583481 | -0.0585906 | 0.09529967 | 0.12624308 | -0.0009648 |   |
| subject25 | 0.76948602 | 0.47686288 | 0.45013436 | 0.54320723 | 0.5878762  |   |
| subject26 | -0.0382265 | 0.1504996  | -0.0821204 | 0.00381755 | 0.26143044 |   |
| subject27 | -0.1844682 | -0.0469997 | -0.1632362 | -0.1063766 | -0.0584439 |   |
| subject28 | 0.43586497 | 0.52899981 | 0.44617159 | 0.50989444 | 0.57094737 | - |
| subject29 | 0.15343968 | -0.02846   | 0.00147637 | 0.07742407 | 0.14606397 |   |
| subject30 | 0.40526485 | 0.15547495 | 0.21024939 | 0.21415538 | 0.15030492 | 7 |
| subject31 | 0.35205935 | 0.50132093 | 0.1961242  | 0.27880546 | 0.48500748 | Y |
| subject32 | 0.17641475 | 0.16695224 | 0.01392484 | 0.16836725 | 0.08872442 |   |
| subject33 | 0.31778521 | 0.08344425 | 0.18525871 | 0.52450593 | 0.44422351 | 5 |
| subject34 | 0.37239137 | 0.2581854  | 0.41498174 | 0.23412601 | 0.34493018 | 4 |



From the tables in the appendix, it is shown that the LSTM and the GRU model have very similar performance and accuracy. In a random seeded machine learning process, the highest correlation mark of the LSTM horizontal regression is 0.8425. The correlation mark of the GRU horizontal regression can reach up to 0.8203. The best vertical regression of LSTM score is 0.7695. And the vertical regression of GRU model goes up to 0.7113. The table also reveals that the horizontal cursor movement prediction is generally better than the vertical cursor movement prediction for the same subject. It is worth noting that the prediction accuracy varies from subject to subject. For example, subject 25 performs very well in both horizontal and vertical LSTM trails with an average score of 0.7692 for horizontal trails and an average score of 0.5655 for vertical trails. Subject 21 performs well in the horizontal tests but poorly in the vertical tests. Subject 14 can perform equally well results on both types. However, there are subjects who have no significant patterns such as subject 16.



....

4

## Task B A Binary Classifier with CNN



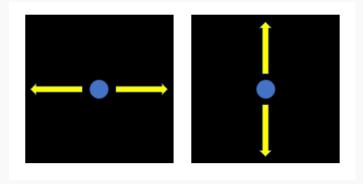
## **01 INTRODUCTION**

• Input data:

34 subjects, each subject practiced 10 trials. 5 trials of horizontal cursor movement, 5 trials of vertical cursor movement. Each trial last for 60s with a sampling rate at 128Hz.

Practical application:

Need to specify the orientation of the cursor movement in order to apply the corresponding regression model.



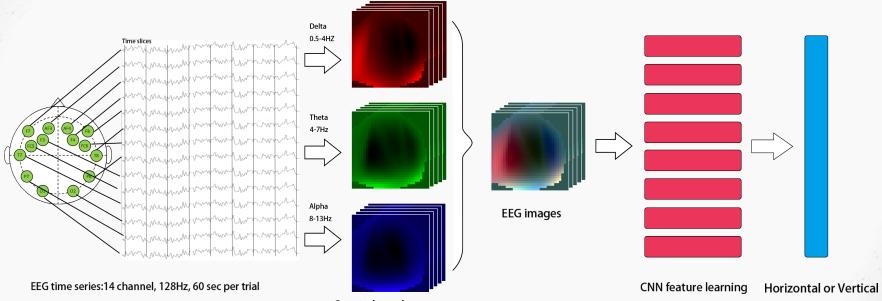
 Binary classifier:
Act as a gate in front of the regression model to indicate if the user want to move the cursor horizontally or vertically

## Why DNN?

- **Deep Neural Networks(DNN)** has recently achieved remarkable accomplishment in several kinds of recognition tasks, including image, video, speech and text.
- Relatively **unexplored** in **neuroimaging** domain
  - DNN typically takes advantage of large data sets
  - Sample set of neuroimaging data is quite limited
- Some **previous work** in learning EEG representations using **CNN** and **RNN** with a **moderate data set** achieved remarkable result.
  - Piotr Mirowski et al. "Classification of patterns of EEG synchronization for seizure prediction" (2009)
  - Hubert Cecotti and Axel Graser. "Convolutional neural networks for P300 detection with application to brain-computer interfaces" (2011)
  - Nihal Fatma Güler, Elif Derya Ubeyli, and Inan Güler. "Recurrent neural networks employing Lyapunov exponents for EEG signals classification" (2005)

### **OBJECTIVES**

- Build a classifier for recognizing users ' intend of cursor movement orientation, and achieve a satisfying prediction accuracy with an acceptable model training time
- Investigate the potential influence of the input window size
- Investigate the variance between different experiment subjects



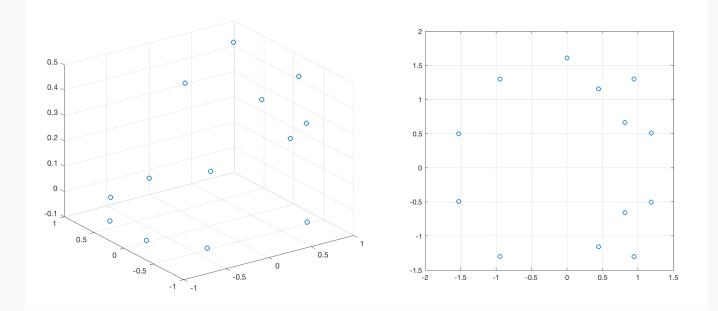
Spectral topology maps

1

## **O3** PREPROCESSING

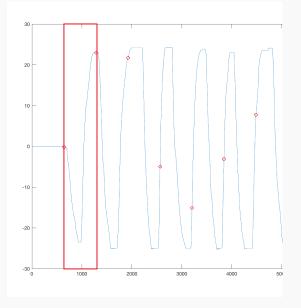
### PROJECTION

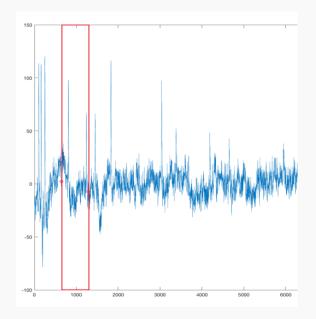
Project the 3-D location of the 14 electrodes to 2-D location using **Azimuthal Equidistant Projection** 



### **FEATURE EXTRACTION**

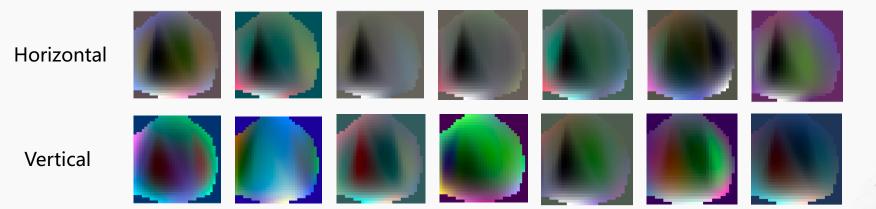
- For each trial of data, chop them into several **equal-sized** time slices
- Window size(length): **5sec**, **2.5sec**, **1.5sec**
- Calculate the **band-power** for each time slice under certain frequency ranges
- Delta(0.5~4Hz), Theta(4~7Hz), Alpha(8~13Hz)





### INTERPOLATION

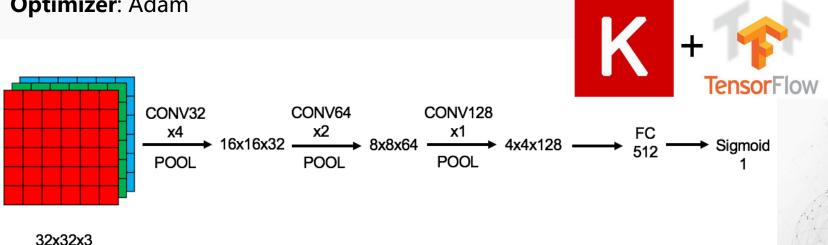
- For each time window, apply Clough-Tocher Scheme to interpolate the scattered power with the 2-D location into three 32x32 spatial maps in R,G,B channels corresponding to three frequency ranges.
- R: Delta G: Theta B: Alpha



First 40sec of subject 1

## 04 MODELLING

- **CONV**: 3x3 filter, stride=1 Activation Function: ReLU
  - "same" padding for the first two convolutional layer, "valid" padding for the rest of the convolutional layer.
  - **Batch Normalization**: accelerate the training by reducing internal covariance shift
- **MAX-POOLING**: 2x2 filter, stride=2 ٠
  - Dropout at a rate of 0.5: reduce overfitting by preventing complex co-adaptations on training data
- **Optimizer**: Adam



### **TRAINING & CROSS VALIDATION** TRAINING

- Input:  $\frac{10\times60}{window size}$  images. E.g. window size=5 sec, input size=120x3x32x32
- Train the model with different input window size to find out the optimal one among 5 sec, 2.5 sec, and 1.5 sec.
- Train the model with normalized input and unnormalized input.
- Train the model with all subject data using the optimal parameter setting

### **CROSS VALIDATION**

- Leave-one-group-out cross-validation(LOGOCV)
- every trial was set to be one group
- Eliminate the internal connection the training set and validation set
- For each split, one group is chosen to be the validation set, and the rest groups are used as the training set.
- Totally  $C_{10}^1 = 10$  splits

## **06 RESULT & DISCUSSION** RESULT

|          | Window size |        |        |
|----------|-------------|--------|--------|
| Test set | 5sec        | 2.5sec | 1.5sec |
| Trial1H  | 58.33       | 62.50  | 40.00  |
| Trial2H  | 83.33       | 79.17  | 52.50  |
| Trial3H  | 75.00       | 70.83  | 77.50  |
| Trial4H  | 66.67       | 83.33  | 45.00  |
| Trial5H  | 83.33       | 79.17  | 75.00  |
| Trial6V  | 100.00      | 100.00 | 100.00 |
| Trial7V  | 100.00      | 100.00 | 100.00 |
| Trial8V  | 100.00      | 4.17   | 70.00  |
| Trial9V  | 91.67       | 100.00 | 87.50  |
| Trial10V | 25.00       | 25.00  | 40.00  |
| MEAN     | 78.33       | 70.42  | 68.75  |
| STD      | 0.2364      | 0.3242 | 0.2334 |

|          | W      | Window size |        |  |
|----------|--------|-------------|--------|--|
| Test set | 5sec   | 2.5sec      | 1.5sec |  |
| Trial1H  | 75.00  | 83.33       | 50.00  |  |
| Trial2H  | 91.67  | 75.00       | 65.00  |  |
| Trial3H  | 75.00  | 70.83       | 75.00  |  |
| Trial4H  | 83.33  | 66.67       | 72.50  |  |
| Trial5H  | 91.67  | 75.00       | 65.00  |  |
| Trial6V  | 100.00 | 79.17       | 82.50  |  |
| Trial7V  | 66.67  | 79.17       | 77.50  |  |
| Trial8V  | 66.67  | 58.33       | 65.00  |  |
| Trial9V  | 58.33  | 70.83       | 70.00  |  |
| Trial10V | 0.00   | 50.00       | 35.00  |  |
| MEAN     | 70.83  | 70.83       | 65.75  |  |
| STD      | 0.2812 | 0.1021      | 0.1400 |  |

Subject2 normalized

Optimal window size: 5sec •

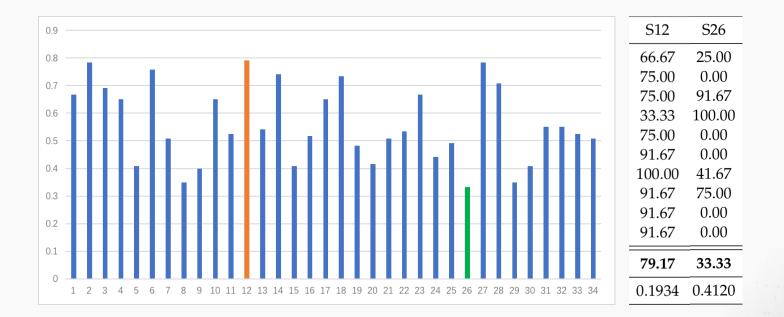
The model performs better without normalization

### • Training time:

- Multi-thread: 4'10" for each training set
- Single thread: 10'50" for each training set
- 2.8 GHz 4-core Intel i7 processor

Subject2 unnormalized

- The best average prediction accuracy is **79.17%** given by subject12' s data, with the maximum prediction accuracy at 100% using the second vertical trial as the test set.
- The worst performance is **33.3%** of average prediction accuracy given by subject26, although the maxi- mum prediction accuracy is also 100%.



### DISCUSSION

• While the model has achieved a satisfying prediction accuracy at 79.17% with a acceptable training time, it is not robust to all subject.

### • Possible reason

- The parameter setting that is optimal for one subject is not that suitable for all other subject
- The temporal property of EEG signals was not utilized

## **FUTURE WORK**

- For every subject, try to find the optimal parameter setting, then find the optimal parameter setting for all subjects such that our model could be generalized for all kind of person.
- Try to implement RNN after each time-distributed CNN output, try to use algorithms like RCNN, LRCN and other video classification techniques.
- Implement the model on GPU to accelerate the training.

# THANKS