High Performance Dynamic Traffic Assignment Based on Variational Inequality

GU Yangsong, LIANG Geyu

Mentor: Dr. Cheng Liu, Dr. Kwai Wong

3. Implementation

> Discretization LWR model Algorithm
> Differential Variational Inequality
> Dynamic Network Loading Based on ODE
> Dynamic Network Loading Based on LWR

What's Dynamic Traffic

Assignment?

Dynamic traffic assignment is aimed at allocating traffic flow to every path and making their travel time minimized over the time.

Dynamic traffic assignment belongs to traffic planning, it plays an important role in Intelligent Transportation System

Such as Route Guidance in Google map Heat Map in Baidu map

Introduction

Dynamic traffic assignment is the positive modeling of automobiles on road network consistent with established

- Nodes: origin or destination
- Links : road
- Origin-Destination Pair
- Time cost $=$ Delay $=$ Travel Time

Abstract Network

Introduction

Continuous Time Dynamic User Equilibrium (DUE)

\checkmark Users choose the path with travel time

Desired solution:

- The for each path
- The corresponding

Continuous Time Dynamic User Equilibrium (DUE)
For each individual, compared with your current travel cost:
If there is another path will lessen your travel cost, you switch!
If there is another departure time will lessen your travel cost, you switch!
Facing with a new scenario, go back to the first two steps. Until the Nash equilibrium is reached!

Nash equilibrium

- In game theory, the Nash equilibrium, named after American mathematician John Forbes Nash Jr , is a solution concept of a non-cooperative game involving two or more players in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy.

Solution?

How's the transportation system going to look like under that equilibrium?

Fig Departure rates and corresponding travel cost in the DUE solution

Solution?

- To know the equilibrium strategies of the other players:

Dynamic Network Loading: The problem of finding link activity when travel demand and departure rates (path flows) are known is commonly referred to as the dynamic network
\checkmark locding iquoblem equilibrium:
Differential Variational Inequality (dVI)

Progress

> Part 1: Dynamic Network Loading(Friesz,2011)

Link state equation

$$
\frac{d x_{a_{1}}^{p}(t)}{d t}=h_{p}(t)-g_{a_{1}}^{p}(t) \forall p \in P
$$

$$
\begin{gathered}
\frac{d x_{a_{i}}^{p}(t)}{d t}=g_{a_{i-1}}^{p}(t)-g_{a_{i}}^{p}(t) \forall p \in P, i \in[2, \operatorname{num}(p)] \\
\left.\frac{d g_{a_{i}}^{p}(t)}{d t}=r_{a_{i}}^{p}(t) \forall p \in P, i \in[1, \operatorname{num}(p)]\right]
\end{gathered}
$$

Medium equation (coming from Taylor expansion)

$$
\frac{d r_{a_{1}}(t)}{d t}=R_{a_{1}}^{p}(x, g, r, h) \quad \forall p \in P
$$

$$
\frac{d r_{a_{i}}^{p}(t)}{d t}=R_{a_{i}}^{p}(x, g, r) \forall p \in P, i \in[2, \operatorname{num}(p)]
$$

$$
\begin{aligned}
x_{a_{i}}^{p}((\tau-1) \cdot \Delta) & =x_{a_{i}}^{p, 0} \quad \forall p \in P, i \in[1, \operatorname{num}(p)] \\
g_{a_{i}}^{p}((\tau-1) \cdot \Delta) & =0 \quad \forall p \in P, i \in[1, \operatorname{num}(p)] \\
r_{a_{i}}^{p}((\tau-1) \cdot \Delta) & =0 \quad \forall p \in P, i \in[1, \operatorname{num}(p)]
\end{aligned}
$$

Flow Propagation

Progress

> Part 2: Convert DUE to DVI
$\operatorname{DVI}\left(\Psi, \Lambda,\left[t_{0}, t_{f}\right]\right):$ find $h^{*} \in \Lambda_{0}$ such that

$$
\begin{gathered}
\sum_{p \in P \int_{t_{0}}^{t_{f}} \Psi_{p}\left(t, h^{*}\right)\left(h-h^{*}\right) d t \geq 0 \forall h \in \Lambda}^{\text {where } \Lambda=h \geq 0: \frac{d y_{i j}}{d t}=\sum_{p \in P_{i j}} h_{p}(t), y_{i j}(0)=0, y_{i j}\left(t_{f}\right)=Q_{i j}}
\end{gathered}
$$

Progress

> Part 3: Solve DVI by Fixed-Point Iteration

$$
\begin{array}{cc}
\text { Equal solution } & h^{*}=P_{\Lambda}\left[h^{*}-\alpha \Psi_{p}\left(t, h^{*}\right)\right] \\
\text { For each iteration step } & \sum \int_{t_{0}}^{t_{f}}\left[h_{p}^{k}(t)-\alpha \Psi\left(t, h_{p}^{k}\right)\right.
\end{array}
$$

Update new departure rate

$$
h_{p}^{k+1}=\left[h_{p}^{k}(t)-\alpha \Psi\left(t, h_{p}^{k}\right)+v_{i j}\right]_{+}
$$

Initialization: path, timespan, arc, h0, Q (demand), epsilon (tolerance) et.
while condition is true
A |hk - hk+1| is larger than tolerance solve ODE to get link volume get link delay get effective path delay
solve V
update hk+1
end while
Output: Phi, hk

Example: Small graph

Fig. Small Network

Arc	Jam density $($ vehicles/km)	Free flow speed $(\mathrm{km} / 5 \mathrm{~min})$	Length (km)
1	800	6	4
2	800	6	8
3	800	8	4
4	800	8	10
5	1000	8	8
6	600	6	10

```
double TA[2] = {75.0,50.0};
double Q[2] = {400,200};
```

//initializing arc info
std:: vector< arc_type > arc= $\{\{0,800,6,4\},\{1,800,6,8\},\{2,800,8,4\},\{3,800,8,10\},\{4,1000,8,8\},\{5,600,6,10\}\} ;$
//initializing path info
std::vector<od_pair_type> DATA_SET =\{\{\{arc[2], $\operatorname{arc}[5]\},\{\operatorname{arc}[0], \operatorname{arc}[1], \operatorname{arc}[5]\},\{\operatorname{arc}[0], \operatorname{arc}[1], \operatorname{arc}[3], \operatorname{arc}[4]\},\{\operatorname{arc}[2], \operatorname{arc}[3], \operatorname{arc}[4]\}\}$, \{\{arc[5]\}, \{arc[3] , arc[4]\}\}\};

Example: Small graph

```
Printing the range of v for each od pair
14.807292,14.807347
9.542000,9.545713
for 0 th h, ND/NX is 0.000004 NX is 77217.074806 ND is 0.301055 Q is 386.794661
for 1 th h, ND/NX is nan NX is 0.000000 ND is 0.000000 Q is 0.000000
for 2 th h, ND/NX is nan NX is 0.000000 ND is 0.000000 Q is 0.000000
for 3 th h, ND/NX is 0.000010 NX is 454.750382 ND is 0.004661 Q is 13.142970
for 4 th h, ND/NX is 0.000001 NX is 32669.432778 ND is 0.037689 Q is 199.743774
for 5 th h, ND/NX is nan NX is 0.000000 ND is 0.000000 Q is 0.000000
```


Example: Path 1

Example: Path 4

Example: Path 5

Joint Institute for
Computational Sciences

If given a large network

Not fast enough!

Using openMP to implement parallel computing

```
m_counter=0;
er=0
h_counter=0;
for(int a=0;a<DATA_SET.size();a++)
{
    for(int b=0;b<DATA_SET[a].size();b++)
    {
        for(int c=0;c<DATA_SET[a][b].size();c++)
        {
            double total_x=0;
            double total_dx=0;
            int arc_num=int(DATA_SET[a][b][c] [0]);
            for(int i=0;i<ARC_MAP[arc_num].size();i++)
            {
                total_x+=x[ARC_MAP[arc_num][i]];
                total_dx+=dxdt [ARC_MAP [arc_num][i]];
                }
            if(c==0)
            {
                dxdt[m_counter+2*m]=R(total_x,total_dx,x[m_counter+m],x[m_counter+2*m],
                h_spline[h_counter](t),DATA_SET [a] [b] [c]);
            h_counter++;
        }else{
            dxdt [m_counter+2*m]=R(total_x,total_dx,x[m_counter+m],x[m_counter+2*m],
                x[m_counter+m-1], DATA_SET[a] [b] [c]);
        }
            m_counter++;
    }
}
}
```



```
#pragma omp parallel for
```

\#pragma omp parallel for
for(int i=0;i<m;i++)
for(int i=0;i<m;i++)
{
{
double total_x=0;
double total_x=0;
double total_dx=0;
double total_dx=0;
std::vector<double> current_arc=DATA_SET[M_MAP[i] [0]][M_MAP[i][1]][M_MAP[i] [2]];
std::vector<double> current_arc=DATA_SET[M_MAP[i] [0]][M_MAP[i][1]][M_MAP[i] [2]];
int arc_num=int(current_arc[0]);
int arc_num=int(current_arc[0]);
for(int j=0;j<ARC_MAP[arc_num].size();j++)
for(int j=0;j<ARC_MAP[arc_num].size();j++)
{
{
total_xt=x[ARC_MAP[arc_num][j]];
total_xt=x[ARC_MAP[arc_num][j]];
total_dxt=dxdt[ARC_MAP[arc_num][j]];
total_dxt=dxdt[ARC_MAP[arc_num][j]];
}
}
if(M_MAP[i] [2]==0)
if(M_MAP[i] [2]==0)
{
{
dxdt[i+2*m]=R(total_x,total_dx,x[i+m],x[i+2*m],
dxdt[i+2*m]=R(total_x,total_dx,x[i+m],x[i+2*m],
h_spline[INDEX_MAP[M_MAP[i] [0]] [M_MAP[i] [1]]](t), current_arc);
h_spline[INDEX_MAP[M_MAP[i] [0]] [M_MAP[i] [1]]](t), current_arc);
}else{
}else{
dxdt[i+2*m]=R(total_x,total_dx,x[i+m],x[i+2*m],
dxdt[i+2*m]=R(total_x,total_dx,x[i+m],x[i+2*m],
x[i+m-1],current_arc);
x[i+m-1],current_arc);
}
}
}
}
{
{
}
}
}

```
}
```


Using openMP to implement parallel computing

-ODE calculation
Linear search for v

12 cores, 24 threads

Performance on small graph

IICSy

Sioux Falls Network

Considering 10 OD pair and 30 paths

double TA [10] $=\{75.0,50.0,75.0,75.0,75.0,50.0,60.0,75.0,75.0,80.0\} ;$
double $Q[10]=\{400,400,400,400,400,400,400,400,400,400\}$

std:: :vector< arc_type > arc= $\{\{0,800,6,4\},\{1,800,6,8\},\{2,800,8,4\},\{3,800,8,10\},\{4,1000,8,8\},\{5,600,6,10\}$, $\{6,800,6,4\},\{7,800,6,8\},\{8,800,8,4\},\{9,800,8,10\},\{10,1000,8,8\},\{11,600,6,10\}$ $\{18,800,6,4\},\{13,000,6,0\},\{14,000,6,4\},\{15,000,6,10\},\{16,1000,6,6\},\{17,600,6,10\}$ $\{24,800,6,4\},\{25,800,6,8\},\{26,800,8,4\},\{27,800,8,10\},\{28,1000,8,8\},\{29,600,6,10\}$, $\{24,800,6,4\},\{25,800,6,8\},\{26,800,8,4\},\{27,800,8,10\},\{28,1000,8,8\},\{29,600,6,10\}$, $\{30,800,6,4\},\{31,800,6,8\},\{32,800,8,4\},\{33,800,8,10\},\{34,1000,8,8\},\{35,600,6,10\}$,
$\{36,800,6,4\},\{37,800,6,8\},\{38,800,8,4\},\{39,800,8,10\},\{40,1000,8,8\},\{41,600,6,10\}$, $\{36,800,6,4\},\{37,800,6,8\},\{38,800,8,4\},\{39,800,8,10\},\{40,1000,8,8\},\{41,600,6,10\}$,
$\{42,800,6,4\},\{43,800,6,8\},\{44,800,8,4\},\{45,800,8,10\},\{46,1000,8,8\},\{47,600,6,10\}$, $\{42,800,6,4\},\{43,800,6,8\},\{44,800,8,4\},\{45,800,8,10\},\{46,1000,8,8\},\{47,600,6,10\}$,
$\{48,800,6,4\},\{49,800,6,8\},\{50,800,8,4\},\{51,800,8,10\},\{52,1000,8,8\},\{53,600,6,10\}$, $\{48,800,6,4\},\{49,800,6,8\},\{50,800,8,4\},\{51,800,8,10\},\{52,1000,8,8\},\{53,600,6,10\}$,
$\{54,800,6,4\},\{55,800,6,8\},\{56,800,8,4\},\{57,800,8,10\},\{58,1000,8,8\},\{59,600,6,10\}$, $\{54,800,6,4\},\{55,800,6,8\},\{56,800,8,4\},\{57,800,8,10\},\{58,1000,8,8\},\{59,600,6,10\}$,
$\{60,800,6,4\},\{61,800,6,8\},\{62,800,8,4\},\{63,800,8,10\},\{64,1000,8,8\},\{65,600,6,10\}$, $\{60,800,6,4\},\{61,800,6,8\},\{62,800,8,4\},\{63,800,8,10\},\{64,1000,8,8\},\{65,600,6,10\}$
$\{66,800,6,4\},\{67,800,6,8\},\{68,800,8,4\},\{69,800,8,10\},\{70,1000,8,8\},\{71,600,6,10\}$, $\{72,800,6,4\},\{73,800,6,8\},\{74,800,8,4\},\{75,800,8,10\},\{76,1000,8,8\},\{77,600,6,10\}$ $\{78,800,6,4\},\{79,800,6,8\},\{80,800,8,4\},\{81,800,8,10\}\} ;$

[^0]

Joint Institute for
Computational Sciences

Sioux Falls Network

Considering

 10 OD pair and 30 paths

Sioux Falls Network :path no. 30
Considering 10 OD pair and 30 paths

Fig. 1. Sioux Falls network.

Sioux Falls Network

Considering 10 OD pairs and 30 paths

Sioux Falls Network

Considering 23 OD pairs and 232 paths

17	19	14	3								
17	19	15	11	8	5						
17	21	23	11	8	5						
17	21	25	27	31	8	5					
18	55	47	19	14	3						
18	55	47	21	23	11	8	5				
18	55	48	26	23	11	8	5				
18	55	48	26	23	12	14	3				
18	55	48	27	31	8	5					
18	55	48	27	33	35	5					
18	55	49	51	27	31	9	12	14	3		
18	55	49	51	27	33	35	5				
18	56	61	57	43	26	23	11	8	5		
18	56	61	57	43	27	31	8	5			
18	56	62	65	67	43	27	31	8	5		
18	56	62	66	74	38	35	6	9	12	14	3
18	56	63	67	43	27	33	35	5			
18	56	63	7	71	4	31	8	5			
18	56	63	7	71	41	43	27	33	35	5	
17	19	14									
17	19	15	11	8	5	1					
17	21	23	11	8	5	1					
17	21	23	12	14							
17	21	25	27	31	8	5	1				
18	55	47	19	14							
18	55	47	21	23	11	8	5	1			
18	55	48	26	23	11	8	5	1			
18	55	48	26	23	12	14					
18	55	48	27	31	8	5	1				
18	55	48	27	33	35	5	1				

Fig. 1. Sioux Falls network.

Sioux Falls Network

Considering 23 OD pairs and 232 paths
Path no.40:

Sioux Falls Network

Considering 23 OD pairs and 232 paths

Table of average time for a single iteration

With a larger graph, comes with a higher efficiency of openMP.

Sioux Falls Network (Larger graph)

Considering 552 OD pair and 6255 paths

- Iterations:12
\checkmark Running time: 10968.9 s
Average time for a iteration: $914.1 \mathrm{~s}(15.2 \mathrm{~min})$
- Epsilon: 0.5
For the 6208 th. path, the integral of departure rate of final hk is 5.628382
For the 6209 th. path, the integral of departure rate of final hk is 0.000000
For the 6210 th path, the integral of departure rate of final hk is 0.000000
For the 6211 th path, the integral of departure rate of final hk is 0.000000
For the 6212 th path, the integral of departure rate of final hk is 0.000000
For the 6213 th path, the integral of departure rate of final hk is 0.000000
For the 6214 th path, the integral of departure rate of final hk is 0.000000
For the 6215 th. path, the integral of departure rate of final hk is 0.000000
For the 6216 th. path, the integral of departure rate of final hk is 4.373205
For the 6217 th. path, the integral of departure rate of final hk is 0.000000

Sioux Falls Network (Larger graph)
Considering 552 OD pair and 6255 paths

Graph of path 6208

Graph of path 6216

Future work

Implementation on CUDA or GPU. Improvement on DNL based on DTA

Dynamic network loading by PDEs
LWR model --- hydrodynamic model
Non-linear PDE

$$
\frac{\partial \rho(t, x)}{\partial t}+\frac{\partial f(\rho(t, x))}{\partial x}=0
$$

1. Queues and delay
2. Density-speed relationship
3. First-in-First-out principle
4. Route information

It depends on the downstream and upstream flow state.

Water propagate in pipe
Thickness \rightarrow capacity
Water \rightarrow flow

 TENNESSEE

Implementation

Discretization (Han,2012)

$$
\mathrm{D} a(\mathrm{t})=\left\{\begin{array}{cc}
q_{i n}^{a}\left(t-\frac{L_{a}}{k_{a}}\right) & \text { if } N_{u p}^{a}\left(t-\frac{L_{a}}{k_{a}}\right)=N_{d o w n}^{a}(t) \\
C_{a} & \text { if } N_{u p}^{a}\left(t-\frac{L_{a}}{k_{a}}\right)>N_{d o w n}^{a}(t)
\end{array}\right.
$$

Link model

$$
S_{a}(t)=\left\{\begin{array}{cc}
q_{o u t}^{a}\left(t-\frac{L_{a}}{w_{a}}\right) & \text { if } N_{u p}^{a}(t)=N_{\text {down }}^{a}\left(t-\frac{L_{a}}{w_{a}}\right)+\rho_{j a m}^{a} L_{a} \\
C_{a} \quad \text { if } N_{u p}^{a}(t)<N_{\text {down }}^{a}\left(t-\frac{L_{a}}{w_{a}}\right)+\rho_{j a m}^{a} L_{a}
\end{array}\right.
$$

Implementation

Discretization (Han,2012)

Junction model

$$
\begin{aligned}
& \alpha_{i j}^{J}(t)=\sum_{p \ni a, b} \mu_{a}^{p}\left(t, L_{a}\right) \\
& q_{o u t, i}=\min \left\{D_{i}(t), \frac{S_{j}(t)}{\alpha_{i}}\right\} j \in I^{o} \\
& q_{i n, j}=\sum_{i \in I^{v}} \alpha_{i j} \cdot q_{o u t, i}(t)
\end{aligned}
$$

Path delay

Moskowitz function

Algorithm 2: Computing dynamic network loading based on LWR model by C

Initialization: path,timespan, arc, h0, Q (demand), epsilon (tolerance) et. for all $\mathrm{i}=1$: num (OD pair)

While condition is true
for $\mathrm{t}=1$: num (timesteps)
for $\mathrm{i}=1$: num (links)
Solve D Get link demand
Solve S Get link supply
for $\mathrm{j}=1$: num (linkin)
for $\mathrm{k}=1$: num (linkout)
get turning ratio
end for end for

end for

Calculate entering flow A equation 5.5
Calculate exiting flow A equation 5.6

end for

get effective path delay
get a v in each iteration
update $\mathrm{hk}+1$ according to equation 3.4
end while
end for

A $\mathrm{hk}-\mathrm{hk}+1$ is larger than tolerance

A equation 5.2
Aequation 5.3

A equation 5.4

A equation 3.3
equatorin j.i
居

A each v map to a hk

$$
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Get link demand } \\
\text { suply }
\end{array} \\
\hline
\end{array}
$$

Output: Phi, hk
Flow chart
.

The value in each cellular denotes

 the departure rate, downstream flow, upstream flow associate with different tables.

Link travel time example

Vertical difference \rightarrow length of link.
Slant line \rightarrow cumulative inflow and outflo

Conclusion and remarks

For ODE model, $>$ We apply openMP in solving ODE and fix-point iteration
$>$ succeed and obtain ideal assignment results.
$>$ The parallel computing significantly fastened the solving speed as the same result compared with common computation
$>$ In this way, it's possible to apply this technology to urban network planning.
For PDE model, $>$ It remains many works to do. We haven't finish the entire code $>$ we proposed the pseudo code, and the next step is realizing it by C.
$>$ If possible, parallel computing will be also used to certify the high performance in dynamic traffic assignment.

Acknowledgements

I would like to express my deep gratitude to my mentor Dr. Liu and Dr. Wong, For their patient guidance and enthusiastic encouragement of this project. I would also like to thanks my partner Geyu and any other who helped me.

In addition, this project was sponsored by the National Science Foundation through Research Experience for Undergraduates (REU) award, with additional support from the Joint Institute of Computational Sciences at University of Tennessee Knoxville. This project used allocations from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation. In addition, the computing work was also performed on technical workstations donated by the BP High Performance Computing Team.

THENIVERSTTY OF $\begin{gathered}\text { THE } \\ \text { TENNESSE } \\ \text { National Laboratory }\end{gathered}$
 National Laboratory

References

Daganzo, C., 1994. The cell transmission model. Part I: a simple dynamic representation of highway traffic. Transportation Research Part B 28 (4), 269-287.
Friesz, T., Han, K., Neto, P., Meimand, A. and Yao, T. (2013). Dynamic user equilibrium based on a hydrodynamic model. Transportation Research Part B: Methodological, 47, pp.102-126.
Friesz, T., Kim, T., Kwon, C. and Rigdon, M. (2011). Approximate network loading and dual-time-scale dynamic user equilibrium. Transportation Research Part B: Methodological, 45(1), pp.176-207.
Friesz, T. (2014). Dynamic optimization and differential games. [Place of publication not identified]: Springer-Verlag New York.
Han, K., Piccoli, B., Friesz, T. L., \& Yao, T. 2012. A Continuous-time Link-based Kinematic Wave Model for Dynamic Traffic Networks. Arxiv e-prints, Aug.
Han, K., Friesz, T.L., Yao, T., 2013a. A partial differential equation formulation of Vickrey's bottleneck model, part I: Methodology and theoretical analysis. Transportation Research Part B 49, 55-74.
Han, K., Friesz, T.L., Yao, T., 2013b. A partial differential equation formulation of Vickrey's bottleneck model, part II: Numerical analysis and computation. Transportation Research Part B 49, 75-93.
Han, K., Piccoli, B. and Szeto, W. (2015). Continuous-time link-based kinematic wave model: formulation, solution existence, and well-posedness. Transportmetrica B: Transport Dynamics, 4(3), pp.187-222.
Han, K., Piccoli, B. and Friesz, T. (2016). Continuity of the path delay operator for dynamic network loading with spillback. Transportation Research Part B: Methodological, 92, pp.211-233.
Han, K., Friesz, T.L., Yao, T., 2014. Vehicle spillback on dynamic traffic networks and what it means for dynamic traffic assignment models. 5th International Symposium on Dynamic Traffic Assignment. Salerno, Italy, 17-19 June 2014.
Lighthill, M. and Whitham, G. (1955). On kinematic waves. [London]: [Royal Society].
Programming Methods

End

Thank You

[^0]: std: : vector<od_pair_type> DATA_SET = $\{$
 $\{\{\operatorname{arc}[2], \operatorname{arc}[7], \operatorname{arc}[37], \operatorname{arc}[39], \operatorname{arc}[75], \operatorname{arc}[64]\},\{\operatorname{arc}[2], \operatorname{arc}[7], \operatorname{arc}[36], \operatorname{arc}[34], \operatorname{arc}[41], \operatorname{arc}[45], \operatorname{arc}[59]\}$,
 $\{\operatorname{arc}[2], \operatorname{arc}[7], \operatorname{arc}[36], \operatorname{arc}[32], \operatorname{arc}[29], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\},\{\operatorname{arc}[1], \operatorname{arc}[4], \operatorname{arc}[16], \operatorname{arc}[22], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\}$,
 $\{\operatorname{arc}[3], \operatorname{arc}[4], \operatorname{arc}[16], \operatorname{arc}[20], \operatorname{arc}[18], \operatorname{arc}[56]\}\}$,
 $\{\{\operatorname{arc}[4], \operatorname{arc}[16], \operatorname{arc}[22], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\},\{\operatorname{arc}[4], \operatorname{arc}[16], \operatorname{arc}[20], \operatorname{arc}[18], \operatorname{arc}[56]\},\{\operatorname{arc}[4], \operatorname{arc}[16], \operatorname{arc}[22], \operatorname{arc}[55], \operatorname{arc}[56]\}\}$, $\{\{\operatorname{arc}[10], \operatorname{arc}[34], \operatorname{arc}[42], \operatorname{arc}[73], \operatorname{arc}[75], \operatorname{arc}[64]\},\{\operatorname{arc}[10], \operatorname{arc}[27], \operatorname{arc}[30], \operatorname{arc}[53], \operatorname{arc}[59]\},\{\operatorname{arc}[9], \operatorname{arc}[12], \operatorname{arc}[16], \operatorname{arc}[22], \operatorname{arc}[49], \operatorname{arc}[53]$ $\{\operatorname{arc}[9], \operatorname{arc}[13], \operatorname{arc}[25], \operatorname{arc}[30], \operatorname{arc}[53], \operatorname{arc}[59]\}\}$,
 $\{\{\operatorname{arc}[13], \operatorname{arc}[25], \operatorname{arc}[281, \operatorname{arc}[461, \operatorname{arc}[69], \operatorname{arc}[64]\},\{\operatorname{arc}[12], \operatorname{arc}[161, \operatorname{arc}[22], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\}\}$,
 $\{\{\operatorname{arc}[54], \operatorname{arc}[56]\},\{\operatorname{arc}[17], \operatorname{arc}[22], \operatorname{arc}[49], \operatorname{arc}[531], \operatorname{arc}[59]\},\{\operatorname{arc}[18], \operatorname{arc}[551], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\}\}$
 $\{\{\operatorname{arc}[251, \operatorname{arc}[28], \operatorname{arc}[46], \operatorname{arc}[69], \operatorname{arc}[64]\},\{\operatorname{arc}[251, \operatorname{arc}[28], \operatorname{arc}[46], \operatorname{arc}[68]\},\{\operatorname{arc}[24], \operatorname{arc}[22], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\}\}$,
 $\{\{\operatorname{arc}[34], \operatorname{arc}[42], \operatorname{arc}[73], \operatorname{arc}[75], \operatorname{arc}[64]\},\{\operatorname{arc}[32], \operatorname{arc}[29], \operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\},\{\operatorname{arc}[32], \operatorname{arc}[28], \operatorname{arc}[46], \operatorname{arc}[68]\}\}$,
 $\{\operatorname{arc}[39], \operatorname{arc}[75], \operatorname{arc}[64]\},\{\operatorname{arc}[39], \operatorname{arc}[75], \operatorname{arc}[69], \operatorname{arc}[68]\}\}$,
 $\{\operatorname{arc}\{46], \operatorname{arc}\{68]\}, \operatorname{arc}[461\}, \operatorname{arc}[69], \operatorname{arc}[64]\},\{\operatorname{arc}\{451, \operatorname{arc}[59]\}\}, / / 3$
 $\{\{\operatorname{arc}[49], \operatorname{arc}[53], \operatorname{arc}[59]\},\{\operatorname{arc}[50], \operatorname{arc}[56]\}\}$

