


Outline



1. Introduction





3.  Implementation





2.   Algorithm







What’s Dynamic Traffic 

Assignment ?

Dynamic traffic assignment belongs to 
traffic planning, it plays an important role in 
Intelligent Transportation System

Dynamic traffic assignment is aimed at 
allocating traffic flow to every path and 
making their travel time minimized over the 
time.

Such as Route Guidance in Google map
Heat Map in Baidu map 











Dynamic traffic assignment is the positive modeling of time-varying flows of 

automobiles on road network consistent with established traffic flow theory 

and travel demand theory. 



Continuous Time Dynamic User Equilibrium (DUE)



Desired solution:







Continuous Time Dynamic User Equilibrium (DUE)

For each individual, compared with your current travel cost:







Until the Nash equilibrium is 
reached!



Nash equilibrium
In game theory, the Nash equilibrium, named after 

American mathematician John Forbes Nash Jr., is 
a solution concept of a non-cooperative game involving 
two or more players in which each player is assumed to 
know the equilibrium strategies of the other players, and 
no player has anything to gain by changing only their own 
strategy.

https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.


Solution?
How’s the transportation system going to look like under 

that equilibrium?

Fig Departure rates and corresponding 

travel cost in the DUE solution



Solution?
To know the equilibrium strategies of the other players: 

Dynamic Network Loading: The problem of finding link activity 

when travel demand and departure rates (path flows) are 

known is commonly referred to as the dynamic network 

loading problem. 
To find the equilibrium:

Differential Variational Inequality (dVI)



Progress



൯𝑑𝑥𝑎1
𝑝
(𝑡

𝑑𝑡
= ℎ𝑝(𝑡) − 𝑔𝑎1

𝑝
(𝑡) ∀𝑝 ∈ 𝑃


൯𝑑𝑥𝑎𝑖

𝑝
(𝑡

𝑑𝑡
= 𝑔𝑎𝑖−1

𝑝
(𝑡) − 𝑔𝑎𝑖

𝑝
(𝑡) ∀𝑝 ∈ 𝑃, 𝑖 ∈ [2, 𝑛𝑢𝑚(𝑝)


𝑑𝑔𝑎𝑖

𝑝
(𝑡)

𝑑𝑡
= 𝑟𝑎𝑖

𝑝
(𝑡) ∀𝑝 ∈ 𝑃, 𝑖 ∈ [1, 𝑛𝑢𝑚 𝑝 ]

𝑑𝑟𝑎1
𝑝
(𝑡)

𝑑𝑡
= 𝑅𝑎1

𝑝
(𝑥, 𝑔, 𝑟, ℎ) ∀𝑝 ∈ 𝑃


൯𝑑𝑟𝑎𝑖

𝑝
(𝑡

𝑑𝑡
= 𝑅𝑎𝑖

𝑝
(𝑥, 𝑔, 𝑟) ∀𝑝 ∈ 𝑃, 𝑖 ∈ [2, 𝑛𝑢𝑚(𝑝)

൧𝑥𝑎𝑖
𝑝
((𝜏 − 1) ⋅ 𝛥) = 𝑥𝑎𝑖

𝑝,0
∀𝑝 ∈ 𝑃, 𝑖 ∈ [1, 𝑛𝑢𝑚(𝑝)

൧𝑔𝑎𝑖
𝑝
((𝜏 − 1) ⋅ 𝛥) = 0 ∀𝑝 ∈ 𝑃, 𝑖 ∈ [1, 𝑛𝑢𝑚(𝑝)

൧𝑟𝑎𝑖
𝑝
((𝜏 − 1) ⋅ 𝛥) = 0 ∀𝑝 ∈ 𝑃, 𝑖 ∈ [1, 𝑛𝑢𝑚(𝑝)



Arc Volume 
(x) Arc Delay

Path Delay Travel Cost



Progress



DVI(𝛹,𝛬, [𝑡0,𝑡𝑓]): 𝑓𝑖𝑛𝑑 ℎ
∗ ∈ 𝛬0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

 𝑝∈P න
𝑡0

𝑡𝑓

𝛹𝑝(𝑡, ℎ
∗)(ℎ − ℎ∗)𝑑𝑡 ≥ 0 ∀ℎ ∈ 𝛬

𝑤ℎ𝑒𝑟𝑒 𝛬 = ℎ ≥ 0 :
𝑑𝑦𝑖𝑗

𝑑𝑡
= 𝑝∈𝑃𝑖𝑗ℎ𝑝(𝑡), 𝑦𝑖𝑗(0) = 0, 𝑦𝑖𝑗(𝑡𝑓) = 𝑄𝑖𝑗



Progress



൧ℎ∗ = 𝑃𝛬[ℎ
∗ − 𝛼𝛹𝑝(𝑡, ℎ

∗)



𝑝∈𝑃𝑖𝑗

න
𝑡0

𝑡𝑓

ℎ𝑝
𝑘(𝑡) − 𝛼𝛹(𝑡, ℎ𝑝

𝑘) + 𝑣𝑖𝑗 +
= 𝑄𝑖𝑗

ℎ𝑝
𝑘+1 = ℎ𝑝

𝑘(𝑡) − 𝛼𝛹(𝑡, ℎ𝑝
𝑘) + 𝑣𝑖𝑗 +



Algorithm 1  Computing ODE and fixed point iteration Flow chart

Initialization: path, timespan, arc, h0, Q(demand),

epsilon (tolerance) et.

while condition is true  |hk - hk+1| is larger than tolerance

solve ODE to get link volume

get link delay

get effective path delay

solve v

update hk+1

end while

Output: Phi, hk

ODE
Dynamic Network

Loading

Get arc volume 

Get arc delay 

Get path delay 

DVI  Problem

Fixed-Point Problem

The best departure 
time and path choice



4

1 2

5

3

1 2

3

4 5

6

Arc Jam density
(vehicles/km)

Free flow speed
(km/5min)

Length (km)

1 800 6 4

2 800 6 8

3 800 8 4

4 800 8 10

5 1000 8 8

6 600 6 10





-50

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300



-50

-40

-30

-20

-10

0

10

20

30

40

50

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90



-50

-40

-30

-20

-10

0

10

20

30

40

50

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90















0 200 400 600 800 1000 1200

10

5

2

1

0.5

0.25

With openMP Without openMP







-50

-40

-30

-20

-10

0

10

20

30

40

50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90



0 500 1000 1500 2000 2500

10

1

Using openMP Without using openMP





-50

-40

-30

-20

-10

0

10

20

30

40

50

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90



0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71

Without using openMP

Using openMP

epsilon = 0.05



0 10 20 30 40 50 60

small

siouxfall 10 pairs

siouxfall 23 pairs

Using openMP Without using openMP















-50

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-50

-40

-30

-20

-10

0

10

20

30

40

50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90









)𝜕𝜌(𝑡, 𝑥

𝜕𝑡
+

)𝜕𝑓(𝜌(𝑡, 𝑥)

𝜕𝑥
= 0



𝑆𝑎(𝑡) =

𝑞𝑜𝑢𝑡
𝑎 (𝑡 −

𝐿𝑎
𝑤𝑎

) 𝑖𝑓𝑁𝑢𝑝
𝑎 (𝑡) = 𝑁𝑑𝑜𝑤𝑛

𝑎 (𝑡 −
𝐿𝑎
𝑤𝑎

) + 𝜌𝑗𝑎𝑚
𝑎 𝐿𝑎

𝐶𝑎 𝑖𝑓 𝑁𝑢𝑝
𝑎 (𝑡) < 𝑁𝑑𝑜𝑤𝑛

𝑎 (𝑡 −
𝐿𝑎
𝑤𝑎

) + 𝜌𝑗𝑎𝑚
𝑎 𝐿𝑎

𝑞𝑖𝑛
𝑎 (𝑡 −

𝐿𝑎
𝑘𝑎
) 𝑖𝑓𝑁𝑢𝑝

𝑎 (𝑡 −
𝐿𝑎
𝑘𝑎
) = 𝑁𝑑𝑜𝑤𝑛

𝑎 (𝑡)

𝐶𝑎 𝑖𝑓𝑁𝑢𝑝
𝑎 (𝑡 −

𝐿𝑎
𝑘𝑎
) > 𝑁𝑑𝑜𝑤𝑛

𝑎 (𝑡)

D𝑎 t =

Supply

density

Capacity

`

Demand

density

Capacity

Flow

density

Capacity

Free Congestion

Free Congestion

Free Congestion



𝛼𝑖𝑗
𝐽 (𝑡) = 

𝑝∍𝑎,𝑏

൯𝜇𝑎
𝑝
(𝑡, 𝐿𝑎

𝑞𝑜𝑢𝑡,𝑖 = min{𝐷𝑖(𝑡),
൯𝑆𝑗(𝑡

𝛼𝑖
} 𝑗 ∈ 𝐼𝑜

𝑞𝑖𝑛,𝑗 = 

𝑖∈𝐼𝑣

൯𝛼𝑖𝑗 · 𝑞𝑜𝑢𝑡,𝑖(𝑡

൯𝑁𝑑𝑜𝑤𝑛
𝑎 (𝑡) = 𝑁𝑢𝑝

𝑎 (𝜏𝑎(𝑡)

𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 = 𝜏𝑎(𝑡) − 𝑡

P1

P2

P3



Algorithm 2: Computing dynamic network loading based on LWR 

model by C

Flow chart

Initialization: path,timespan, arc, h0, Q(demand), epsilon (tolerance) et.

for all i = 1 : num (OD pair)

While condition is true  hk - hk+1 is larger than tolerance

for t =1 : num (timesteps)

for i = 1 : num (links)

Solve D Get link demand equation 5.2

Solve S Get link supply equation 5.3

for j = 1 : num (linkin)

for k = 1 : num (linkout)

get turning ratio equation 5.4

end for

end for

end for

Calculate entering flow equation 5.5

Calculate exiting flow equation 5.6

end for

get effective path delay

get a v in each iteration equation 3.3

update hk+1 according to equation 3.4 each v map to a hk

end while

end for

Output: Phi, hk

Get junction 
turning ratio

Update entering 
flow

Get link delay

DVI problem

The best 
departure time 
and path choice

T<time
steps

Input 

Get link demand
suply

Update exiting 
flow

Get path delay 

Fixed point 
iteration

Output 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.2 0 0 0 0 0 0 0 0

2 0 0 0 0 0.1 0.4 0.6 0.8 0.9 0.7 0.6 0.3 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0.6 0.2 0.3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0.4 0.6 0.8 0.9 0.5 0.3 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0.6 0.7 0.7 0.6 0.5 0.2 0.4 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0.3 0.4 0.5 0.6 0.4 0.3 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0.2 0 0.4 0.5 0.6 0.5 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0.6 0.6 0.7 0.5 0.4 0 0 0 0 0 0 0 0

Time Steps

P
at

h
 

、
、































Thank You 


