
High Performance Dynamic Traffic Assignment

Based on Variational Inequality

Liang Geyu (HKUST), Gu Yangsong (CSUST)

Mentor: Liu Cheng (ORNL), Wong Kwai (UTK)
gliangad@connect.ust.hk, guyangsong.csust@outlook.com

cheng.n.liu@gmail.com, kwong@utk.edu

August 4, 2018

Abstract

Nowadays, dynamic traffic assignment (DTA) plays an increasingly important role

in urban intelligent traffic planning. High efficiency of assignment becomes the

ultimate target which many companies and researchers are pursuing for. Fortunately,

parallel computing serves us as an effective tool to improve dynamic traffic assignment.

DTA, as one kind of traffic assignment, aims at partitioning and then allocating the

origin-destination demand to paths in order to minimize the travel cost for every user.

In this project, we concentrate on modeling dynamic network loading(DNL) with the

fixed-pointed algorithm and solving it in a highly efficient way. And to achieve that

goal, the tool of parallel computing we applied is openMp. During this project the DNL

process can be classified into two categories, namely ODE and PDE model. As a result,

DTA based on ODE model, is successfully solved by parallel computing while PDE

model still requires much work to do in the future.

1 Introduction

Dynamic traffic assignment(DTA) is usually viewed as the positive(descriptive)

modeling of time varying flows on vehicular networks consistent with established

traffic flow. The models of dynamic traffic assignment are determined by departure

rates, departure times and route choices over a given space-time interval. They seek to

reproduce the traffic flow propagation and dynamic evolution in networks. As a kernel

component of dynamic traffic assignment, dynamic network loading (DNL) determines

the assignment result directly. In this paper we mainly concentrate on two DNL models

which are ordinary differential equations (ODEs) and partial differential equations

(PDEs), and the latter is also called Lighthill-Whitham-Richards (LWR) model. The

principle that is followed throughout this paper is known as dynamic user equilibrium

(DUE) where the unit travel cost, including early and late arrival penalties, is consistent

with path and departure time selections by users between certain origin-destination(OD)

pair.

mailto:gliangad@connect.ust.hk
mailto:guyangsong.csust@outlook.com
mailto:cheng.n.liu@gmail.com

1.1 Description of DTA

We’re using this section to describe the basic theory of DTA and explain some

traffic terms. The entire model is based on a given traffic network, such as the simple

network showed in Firgure1(right). In general, a network is consisted of a set of nodes

and links while several directed links could be grouped to a path. Each origin-

destination(OD) pair may consist one or more paths, and each link is typically

associated with some impedance that affects the inflow and outflow. Therefore, the

traversal time spent on each path differs from each other. Dynamic user

equilibrium(DUE) principle is proposed according to the Wardrop theory. It can also be

viewed as a result of Nash equilibrium. Under this principle, users will choose the path

that costs the minimum time at an appropriate departure time. So this kind of dynamic

user equilibrium(DUE) assignment, which is illustrated in Figure1(left), finds the flow

pattern by allocating the OD demands to the network in such a way that no drivers will

change routes for achieving better

travel choice(Sheffi,1985).

Figure 1: Equilibrium in a simple network: Left: a two-link network with one OD pair.

Right: the travel time on both links are equal when the link 1 is assigned for flow x1 while the

link 2 is x2.

1.2 A brief review of DTA

Many research teams have made plenty of research in dynamic traffic assignment

and achieved great progress in modeling and computation for solving DTA. Dynamic

user equilibrium models, as noted by Peeta and Ziliaskopoulos (2001), tend to be

comprised of the following four submodels:

(1) A model of path delay;

(2) Flow dynamic;

(3) Flow propagation constraints;
(4) A path/departure-time choice model.

Merchant and Nemhauser (1978a,b) proposed a flow conservation model based on

ordinary differential equations. Ran et al.(1993) modified the MN model by treating

both entrance and exit flows as control variables. After that, “first in first out” principle

was added to model to make model more practical (Ran et al.1993 and Boyce 1996).

Friesz et al.(1993) proposed the link dynamic state function based on exit time function

which is easier to obtain compared with MN model. Despite these continuous models,

simulation such as cell transmission model (CTM) also shows the great advantages in

solving models (Daganzo,1994). In recent years, due to the development of Lighthill-

Whitman-Richards (LWR) theory, Friesz et al.(2013) and Han et al. (2014) re-described

the flow propagation by hydrodynamic model and solve it by H-J equations. To

overcome the discontinuous in cumulative entering flow and exit flow function, Han et

al.(2014) proposed a continuous-time link-based kinematic wave model for dynamic

traffic networks.

1.3 Organization

The rest of this paper is organized as follows. In section 2, we discuss the dynamic

network loading by ordinary differential equations presented in Friesz et al.(2011). By

solving the ODE equations, we can obtain the link volume. Then, the fundamental

operator of path delay will derivate from link delay. In section 3 we introduce

differential variational inequalities (DVI) to formulate DUE principle, and then it is

solved by being converted to fixed-point problem. To fasten the speed of solving DTA

and enlarge the network scale, we used the openMP, which is a practical tool to enable

parallel computing. In section 4, we take small and SiouxFalls network for example to

test the algorithm and also the advantages of using parallel computing. In section 5, we

will present the LWR model, the difference compared with ODE is the dynamic

network loading part. It will be solved by simulation in a discrete way. Link or path

travel time could be obtained directly from the result. And the following part of solving

fixed-point problem is the same with ODE model.

2 Dynamic network loading by ODEs

Dynamic network loading is a crucial step to find equilibrium. And it should be

established in a way which will return the link volume when given travel demand and

path departure rates efficiently. ODE model is comparatively easy to implement using

computer.

2.1 Dynamic algebraic systems (DAEs)

Let us consider a road network described by a directed graph (A,V), where A,V

denotes the set of links and nodes, respectively. Then we begin our work by introducing

the following key notations used in the derivation of the DAE system:

G(A,V): the original network with node set V and link set A;

R the set of origins in the augmented networks;

S the set of destination in the augmented networks;

rsK the set of paths connect O-D pair r-s, ,r R s S  ;

W the set of OD pair;

()ph t
the departure rate on path p at t;

()p

ax t the flow on arc a associate with path p;

()p

ar t
the first derivative of exit flow function

()p

ag t
the exit flow function of arc a associated with path p

()p

aR t
the second derivative of exit flow function

The proposed DAE system (Freisz,2011) then reads:

1

1

()
() ()

p

a p

p a

dx t
h t g t p P

dt
   

 (2.1)

1

()
() () , [2, ()]i

i i

p

a p p

a a

dx t
g t g t p P i num p

dt 
    

 (2.2)

()
() , [1, ()]i

i

p

a p

a

dg t
r t p P i num p

dt
   

 (2.3)

1

1

()
(, , ,)

p

a p

a

dr t
R x g r h p P

dt
   (2.4)

()
(, ,) , [2, ()]i

i

p

a p

a

dr t
R x g r p P i num p

dt
   

 (2.5)

,0((1)) , [1, ()]
i i

p p

a ax x p P i num p      
 (2.6)

((1)) 0 , [1, ()]
i

p

ag p P i num p      
 (2.7)

((1)) 0 , [1, ()]
i

p

ar p P i num p      
 (2.8)

Where the (, ,)
i

p

aR x g r was fold by second-order Taylor formulation.

-1

2 ' ' 2

2 () 2(() ()) [()]
(, ,)=

([()]) (1 [()] ()) ([()])

i i i i i

i

i i i i i i i

p p p

a a a a ap

a

a a a a a a a

g t g t r t D x t
R x g r

D x t D x t x t D x t





 (2.9)

For initial condition,
-1

() ()
i

p

a pg t h t is always satisfied if only if the exit flow belongs

to first link.

2.2 Path delay operator

 Path delay operator is another crucial ingredient of the DUE model, which is

composed of link delay. In general, link delay is a function of the arc volume and by

convention it is appropriate to utilize BPR function to describe link travel time. But in

this paper, we take a linear function for simplicity.

 Given ()ph t , arc volume will be solved from ODE, and the link travel time (delay)

can be written as:

()a aD x x   (2.10)

=1/ capacity (2.11)

=10*len/speed (2.12)

Where the fundamental diagram D() couples some arc features, namely capacity,

length and speed. To each link, these variables are constants.

Therefore, we can derive the path travel time as the following form:

1 ()

()

1

(,)= [() ()] ()
i i num p

num p
p p p

p a a a

i

D t h t t t t  




   (2.13)

1 1 1
() [()]p

a a at t D x t   (2.14)

1 1
() () [(())]

i i i i i

p p p

a a a a at t D x t  
 

  (2.15)

Where
()

i

p

a t
 is the time of flow exit link ia which enters the network at t.

A common early or late arrival penalty function is added to stress the importance of

arriving on time in real life, and we consider the effective path delay operators of the

following form:

2(,) (,) 0.5 ((,))p p p At h D t h t D t h T      (2.16)

where AT is the target arrival time.

From the derivation effective path delay, we can see that it is a progress of mapping

the departure rate to path delay. In other words, given
()ph t

to each path, then we will

obtain the coordinate path delay.

3 Implementation

3.1 Mathematics implementation

 DVI implement makes DUE principle formulate so that the DTA problem can be

solved more conveniently. Than we rewrite the DUE problem according to the

following theorem. We refer to Friesz(2011,2013) for detailed proofs.

Theorem 1. Infinite-dimensional inequality formulation of DUE. The simultaneous departure-time-

and-path-choice dynamic user equilibrium of Definition 1 is equivalent to the following differential

variational inequality problem on  :

0

*

0 0

* *

P

DVI(, ,[,]) :

(,)() 0

0 : (), (0) 0, ()

f

ij

f

t

p p
t

ij

p P p ij ij f ij

t t find h such that

t h h h dt h

dy
where h h t y y t Q

dt





  

     


      


 


 (3.1)

Where
(0) 0, ()ij ij f ijy y t Q 

 is the boundary conditions. The solution of h is the final

result that we want to achieve.

There are many ways to solve DVI, here we convert it to fixed-point problem:

* * *[(,)]ph P h t h   (3.2)

And for each iteration, we will get a v value by solving the following flow conversation

equation:

0

[() (,)]
f

ij

t
k k

p p ij ij
t

p P

h t t h v Q 



     (3.3)

Then the next input 1kh  can be denoted as:

1

23

[() (,)]

200

k k k

p p p ijh h t t h v

Q



   


 (3.4)

Where the diagram +[] is equal to max{[],0} .If the difference between 1k

ph  and ()k

ph t

is less than a pre-given tolerance, the iteration will be terminated.

3.2 Algorithm

Here is a piece of pseudo code for the algorithm described above and this is also the

blue print of how our real code is implemented.

Algorithm 1 Computing ODE and fixed point iteration

Initialization: path, timespan, arc, h0, Q(demand), epsilon (tolerance) et.

for all i = 1 : num (OD pairs)

 while condition is true  Difference between hk and hk+1 is larger than tolerance

for j = 1 : num (paths)

 for k = 1 : num (links)

 solve ODE to get link volume equations 2.1-2.8

 end for

 end for  end solving ODE

 get link delay (,)
i ia p aD x h x

 get effective path delay (,) (,)Phi D t h F t h  equation 2.16

 solve equation 3.3 get a ijv

 update hk+1 according to equation 3.4 each v map to a hk

end while

end for

Output: Phi, hk

3.3 High performance computation implementation

To enable computation of inputs with large graph size or large number of od pairs,

we decided to integrate the parallel computing technology into our code. The ultimate

goal of this implementation is using CUDA or other library concerning GPU. Here we

only implement an early-stage version which is assisted by OpenMP library.

OpenMP (Open Multi-Processing) is an application programming interface (API) that

supports multi-platform shared memory multiprocessing programming in C, C++,

and Fortran. In our case OpenMP or parallel computing can be used in the process of

solving ODE (equation 2.1 to 2.8) and solving v for each od pair (equation 3.3), as these

two processes happen to be the dominating cost resource in the final running time, the

advantage of using parallel computing is prominent when the graph is enlarged and case

is complicated to a certain degree, as we’ll show in the next section.

4 Numerical example

4.1 Small network

We consider the small network summarized in Figure 2, with six-arc and five-node.

There are two OD pairs {(1,3), (2,3)}W  among which, the following six paths are

employed:

1 2 3 4 5 6{3,6}, {1,2,6}, {1,2,4,5}, {3,4,5}, {6}, {4,5}p p p p p p     

We assume a fixed demand for OD pair(1,3) and (2,3) such that 13 400Q  and

23 200Q  , the target arrival time Ta is 75.0 and 50.0 out of a 0.0 to 100.0 time span, the

result are shown in Figure 2 and Figure 3.

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/C_(programming_language)

 Figure 2 Figure 3

Figure 4

Figure 4 shows the accumulated path volume throughout the whole time span, which

indicates the people’s preference of paths.

Here we take a closer look at the first path’s departure rate and unit cost function, which

is shown in Figure 5.

Figure 5

This graph exhibits the typical characters of DUE thus proves the accuracy of our

algorithm. And it also provides some inspiration to traffic planning: sometimes entering

the network batch by batch will help improve the travel efficiency.

4.2 Sioux Falls network

Sioux Falls network (Figure 6) is much larger than small network since there are 24

nodes, 76 links and thousands paths. Here we implement three different sets of data, which

respectively contains 10 od pairs, 23 od pairs(all the od pair whose origin is node 1), and

552 od pairs (all the possible od pairs in this graph).

0

100

200

300

400

500

p1 p2 p3 p4 p5 p6

Path volume

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

Figure 6

While the efficiency on each input will be discussed in the next subsection, here we’d

like to show some randomly taken result. These results all behave as expected and prove

the correctness of our algorithm.

Figure 7

Figure 8

-50

-40

-30

-20

-10

0

10

20

30

40

50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

-50

-40

-30

-20

-10

0

10

20

30

40

50

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90

Figure 9

Figure 7: Departure rate and cost function of path No.30 in Siuoxfalls(10 pairs)

Figure 8: Departure rate and cost function of path No.40 in Siuoxfalls(23 pairs)

Figure 9: Departure rate and cost function of path No.6209 in Siuoxfalls(552 pairs)

4.3 OpenMP efficiency

 We used the lab machine with 12 cores and OpneMP will have 24 parallel processes

when invoked. We first apply openMP on small graph. Since there is only 2 od pairs in

this graph, the improvement of speed is not obvious, as shown in Figure 10.

 Figure 10, Epsilon vs Running Time on small graph

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200

10

5

2

1

0.5

0.25

With openMP

Without openMP

However, when we start to run data input which is much larger like siouxfalls, the

advantage of parallel computing starts to show. The following table lists the average

time per iteration for different input. Since we are considering the average time then the

epsilon or iteration number is irrelevant.

 Figure 11

In conclusion, we find that the algorithm with OpenMP implemented also

outperform the one without OpenMP, and the gap between them become larger with a

larger input.

5 Dynamic network loading by PDEs

The PDEs model here actually refers to the LWR model which originates from

hydrodynamic model(Friesz,2013). This is a microscopic model that can capture

several network traffic phenomena:

(1).Queues and delay;

(2).Density-velocity relationship;

(3).First-in-first-out(FIFO); and

(4).Route information.

5.1 Partial dynamic algebraic systems (PDAEs)

The analytical solution to the PDE allows us to rewrite the network loading

procedure as a system of differential algebraic equations (DAEs) instead of partial

differential algebraic equations (PDAEs)(Friesz,2013). For convenience, we denote the

following diagrams and variables.

()f The flow function of density

() The density function of t, x

()p

a
The proportion of link volumes in path p

 ()a

downN t
The cumulative exiting flow on link a

 ()a

upN t
The cumulative entering flow entering link a

0 10 20 30 40 50 60

small

siouxfall 10 pairs

siouxfall 23 pairs

Using openMP Without using openMP

()a

inq t
The flow rate entering link

()
out

aq t
The flow rate exiting link

()aD t The demand of flow rate out of link a

()aS t The supply of flow rate into link a

 ak The speed of forward flow propagation

 aw The speed of backward flow propagation

The initial flow propagation can be described as the following form:

(,) ((,))
0

t x f t x

t x

  
 

 
 (5.1)

Because of the relation between ()f and () , the dynamic flow evolution formula

(PDE) actually is a Nonlinear PDE, it’s difficult to solve it directly. In other words, it

can be solved by approximate ways (Friesz,2013) or discretization methods (Han,2012).

The proposed DAE system shown in 5.2-5.7 is given by Han(2012)

Part 1: link model

() () ()

()

() ()

a a aa a

in up down

a a

a

a aa

a up down

a

L L
q t if N t N t

k k
D t

L
C if N t N t

k


  


 
  


 (5.2)

() () ()

()

() ()

a a a aa a

out up down jam a

a a

a

a a aa

a up down jam a

a

L L
q t if N t N t L

w w
S t

L
C if N t N t L

w






   


 
   


 (5.3)

Part 2 Junction model

,

() (,)J p

ij a a

p a b

t t L 


  (5.4)

,

()
min{ (), }

j o

out i i

i

S t
q D t j I


  (5,5)

, , ()
v

in j ij out i

i I

q q t


 (5.6)

Part 3 Link travel time

() (())a a

down up aN t N t (5.7)

Finally, the link travel time is equal to the difference between cumulative entering

volume count and exiting volume count.

5.2 Computation implementations

According to the formulations proposed by Han et al.(2012,2014), the algorithm

are mainly composed of two parts, which are link model and junction model. The

pseudo code listed below are mainly composed of two parts, one is solving PDE and

outputting link delay, the other is solving fixed point iteration and outputting best path

cost function and departure rate function.

Algorithm 2: Computing dynamic network loading based on LWR model by C

Initialization: path, timespan, arc, h0, Q(demand), epsilon (tolerance) et.

for all i = 1 : num (OD pair)

While condition is true  Difference between hk and hk+1 is larger than tolerance

 for t =1 : num (timesteps)

for i = 1 : num (links)

Solve D Get link demand equation 5.2

Solve S Get link supply equation 5.3

for j = 1 : num (linkin)

for k = 1 : num (linkout)

 get turning ratio ()J

ij t equation 5.4

end for

end for

end for

Calculate entering flow ,in jq equation 5.5

Calculate exiting flow ,out iq equation 5.6

end for

get effective path delay (,) (,)Phi D t h F t h 

get a ijv in each iteration equation 3.3

 update hk+1 according to equation 3.4 each v map to a hk

end while

end for

Output: Phi, hk

5.3 Dynamic network loading

 The calculation results can be seen in Figure 12 and 13. The Vertical difference

between two horizontal lines denotes the length of link as is shown in left picture. In

picture 13, Slant line illustrates the cumulative inflow and outflow, and the link travel

time can be derivate from the horizontal difference of each two slant lines.

Figure 12 Flow propagation Figure 13 Cumulative vehicle count

6 Conclusion and remarks

 In this paper, we have presented the whole progress of dynamic traffic assignment

including dynamic network loading and fix point iteration. In the part of dynamic

network loading , we introduced ODE model and PDE model which were respectively

proposed by Friesz and Han. The purpose of this project is aimed at solving the dynamic

traffic assignment using parallel computing and then apply it to large scale graph to

satisfy strict time requirements in real traffic assignment.

 For ODE model, we apply OpenMP in our code, which is one kind of parallel

computing. We succeed and obtain good assignment results. The parallel computing

significantly fastened the solving speed as the same result compared with normal

computation. In this way, it’s possible to apply this technology to computing big graphs

and urban network planning.

 For PDE model, it remains many works to do. We haven’t finish the entire code,

but thanks to the Han (2014), we proposed the pseudo code, and the next step is

realizing it by C. Finally, if possible, parallel computing will be also used to certify the

high performance in dynamic traffic assignment.

References

Daganzo, C., 1994. The cell transmission model. Part I: a simple dynamic representation of highway

traffic. Transportation Research Part B 28 (4), 269–287.

Friesz, T., Han, K., Neto, P., Meimand, A. and Yao, T. (2013). Dynamic user equilibrium based on

a hydrodynamic model. Transportation Research Part B: Methodological, 47, pp.102-126.

Friesz, T., Kim, T., Kwon, C. and Rigdon, M. (2011). Approximate network loading and dual-time-

scale dynamic user equilibrium. Transportation Research Part B: Methodological, 45(1), pp.176-

207.

Friesz, T. (2014). Dynamic optimization and differential games. [Place of publication not identified]:

Springer-Verlag New York.

Han, K., Piccoli, B., Friesz, T. L., & Yao, T. 2012. A Continuous-time Link-based Kinematic Wave

Model for Dynamic Traffic Networks. Arxiv e-prints, Aug.

Han, K., Friesz, T.L., Yao, T., 2013a. A partial differential equation formulation of Vickrey’s

bottleneck model, part I: Methodology and theoretical analysis. Transportation Research Part B 49,

55–74.

Han, K., Friesz, T.L., Yao, T., 2013b. A partial differential equation formulation of Vickrey’s

bottleneck model, part II: Numerical analysis and computation. Transportation Research Part B 49,

75–93.

Han, K., Piccoli, B. and Szeto, W. (2015). Continuous-time link-based kinematic wave model:

formulation, solution existence, and well-posedness. Transportmetrica B: Transport Dynamics, 4(3),

pp.187-222.

Han, K., Piccoli, B. and Friesz, T. (2016). Continuity of the path delay operator for dynamic network

loading with spillback. Transportation Research Part B: Methodological, 92, pp.211-233.

Han, K., Friesz, T.L., Yao, T., 2014. Vehicle spillback on dynamic traffic networks and what it means

for dynamic traffic assignment models. 5th International Symposium on Dynamic Traffic

Assignment. Salerno, Italy, 17-19 June 2014.

Lighthill, M. and Whitham, G. (1955). On kinematic waves. [London]: [Royal Society].

Programming Methods

Merchant, D., Nemhauser, G., 1978a. A model and an algorithm for the dynamic traffic assignment

problems. Transportation Science 12 (3), 183–199.

Peeta, S., Ziliaskopoulos, A., 2001. Foundations of dynamic traffic assignment: the past,

the present and the future. Networks and Spatial Economics 1 (3),233–265.

Ran, B., Boyce, D., 1996. Modeling Dynamic Transportation Networks: An Intelligent

Transportation System Oriented Approach. Springer-Verlag, New York.

Yosef, S., URBAN TRANSPORTATION NETWORKS (1985): Equilibrium Analysis

with Mathematical, 15-25.

