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Abstract 

Nowadays, dynamic traffic assignment (DTA) plays an increasingly important role 

in urban intelligent traffic planning. High efficiency of assignment becomes the 

ultimate target which many companies and researchers are pursuing for. Fortunately, 

parallel computing serves us as an effective tool to improve dynamic traffic assignment. 

DTA, as one kind of traffic assignment, aims at partitioning and then allocating the 

origin-destination demand to paths in order to minimize the travel cost for every user. 

In this project, we concentrate on modeling dynamic network loading(DNL) with the 

fixed-pointed algorithm and solving it in a highly efficient way. And to achieve that 

goal, the tool of parallel computing we applied is openMp. During this project the DNL 

process can be classified into two categories, namely ODE and PDE model. As a result, 

DTA based on ODE model, is successfully solved by parallel computing while PDE 

model still requires much work to do in the future.  

 

1 Introduction 

Dynamic traffic assignment(DTA) is usually viewed as the positive(descriptive) 

modeling of time varying flows on vehicular networks consistent with established 

traffic flow. The models of dynamic traffic assignment are determined by departure 

rates, departure times and route choices over a given space-time interval. They seek to 

reproduce the traffic flow propagation and dynamic evolution in networks. As a kernel 

component of dynamic traffic assignment, dynamic network loading (DNL) determines 

the assignment result directly. In this paper we mainly concentrate on two DNL models 

which are ordinary differential equations (ODEs) and partial differential equations 

(PDEs), and the latter is also called Lighthill-Whitham-Richards (LWR) model. The 

principle that is followed throughout this paper is known as dynamic user equilibrium 

(DUE) where the unit travel cost, including early and late arrival penalties, is consistent 

with path and departure time selections by users between certain origin-destination(OD) 

pair.  
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1.1  Description of DTA 

We’re using this section to describe the basic theory of DTA and explain some 

traffic terms. The entire model is based on a given traffic network, such as the simple 

network showed in Firgure1(right). In general, a network is consisted of a set of nodes 

and links while several directed links could be grouped to a path. Each origin-

destination(OD) pair may consist one or more paths, and each link is typically 

associated with some impedance that affects the inflow and outflow. Therefore, the 

traversal time spent on each path differs from each other. Dynamic user 

equilibrium(DUE) principle is proposed according to the Wardrop theory. It can also be 

viewed as a result of Nash equilibrium. Under this principle, users will choose the path 

that costs the minimum time at an appropriate departure time. So this kind of dynamic 

user equilibrium(DUE) assignment, which is illustrated in Figure1(left), finds the flow 

pattern by allocating the OD demands to the network in such a way that no drivers will 

change routes for achieving better 

travel choice(Sheffi,1985). 

 

Figure 1: Equilibrium in a simple network: Left: a two-link network with one OD pair. 

Right: the travel time on both links are equal when the link 1 is assigned for flow x1 while the 

link 2 is x2. 

 

1.2  A brief review of DTA 

Many research teams have made plenty of research in dynamic traffic assignment 

and achieved great progress in modeling and computation for solving DTA. Dynamic 

user equilibrium models, as noted by Peeta and Ziliaskopoulos (2001), tend to be 

comprised of the following four submodels: 

(1) A model of path delay; 

(2) Flow dynamic; 

(3) Flow propagation constraints;  
(4) A path/departure-time choice model. 

 

Merchant and Nemhauser (1978a,b) proposed a flow conservation model based on 

ordinary differential equations. Ran et al.(1993) modified the MN model by treating 

both entrance and exit flows as control variables. After that, “first in first out” principle 

was added to model to make model more practical (Ran et al.1993 and Boyce 1996). 

Friesz et al.(1993) proposed the link dynamic state function based on exit time function 

which is easier to obtain compared with MN model. Despite these continuous models, 



simulation such as cell transmission model (CTM) also shows the great advantages in 

solving models (Daganzo,1994). In recent years, due to the development of Lighthill-

Whitman-Richards (LWR) theory, Friesz et al.(2013) and Han et al. (2014) re-described 

the flow propagation by hydrodynamic model and solve it by H-J equations. To 

overcome the discontinuous in cumulative entering flow and exit flow function, Han et 

al.(2014) proposed a continuous-time link-based kinematic wave model for dynamic 

traffic networks. 

  

1.3  Organization 

The rest of this paper is organized as follows. In section 2, we discuss the dynamic 

network loading by ordinary differential equations presented in Friesz et al.(2011). By 

solving the ODE equations, we can obtain the link volume. Then, the fundamental 

operator of path delay will derivate from link delay. In section 3 we introduce 

differential variational inequalities (DVI) to formulate DUE principle, and then it is 

solved by being converted to fixed-point problem. To fasten the speed of solving DTA 

and enlarge the network scale, we used the openMP, which is a practical tool to enable 

parallel computing. In section 4, we take small and SiouxFalls network for example to 

test the algorithm and also the advantages of using parallel computing. In section 5, we 

will present the LWR model, the difference compared with ODE is the dynamic 

network loading part. It will be solved by simulation in a discrete way. Link or path 

travel time could be obtained directly from the result. And the following part of solving 

fixed-point problem is the same with ODE model.  

 

2 Dynamic network loading by ODEs 

Dynamic network loading is a crucial step to find equilibrium. And it should be 

established in a way which will return the link volume when given travel demand and 

path departure rates efficiently. ODE model is comparatively easy to implement using 

computer.   

2.1 Dynamic algebraic systems (DAEs) 

Let us consider a road network described by a directed graph (A,V), where A,V 

denotes the set of links and nodes, respectively. Then we begin our work by introducing 

the following key notations used in the derivation of the DAE system: 

 

G(A,V): the original network with node set V and link set A; 

R the set of origins in the augmented networks; 

S the set of destination in the augmented networks; 

rsK  the set of paths connect O-D pair r-s, ,r R s S  ; 

W the set of OD pair; 

( )ph t  
the departure rate on path p at t; 

( )p

ax t  the flow on arc a associate with path p; 



( )p

ar t  
the first derivative of exit flow function  

( )p

ag t  
the exit flow function of arc a associated with path p 

( )p

aR t  
the second derivative of exit flow function  

 

The proposed DAE system (Freisz,2011) then reads: 
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Where the ( , , )
i

p

aR x g r  was fold by second-order Taylor formulation. 
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For initial condition, 
-1

( ) ( )
i

p

a pg t h t  is always satisfied if only if the exit flow belongs 

to first link.  

 

2.2 Path delay operator 

   Path delay operator is another crucial ingredient of the DUE model, which is 

composed of link delay. In general, link delay is a function of the arc volume and by 

convention it is appropriate to utilize BPR function to describe link travel time. But in 

this paper, we take a linear function for simplicity. 



   Given ( )ph t , arc volume will be solved from ODE, and the link travel time (delay) 

can be written as: 

( )a aD x x                                 (2.10) 

=1/ capacity                                (2.11) 

=10*len/speed                               (2.12)  

Where the fundamental diagram D( )   couples some arc features, namely capacity, 

length and speed. To each link, these variables are constants. 

Therefore, we can derive the path travel time as the following form: 
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Where 
( )

i

p

a t
 is the time of flow exit link ia  which enters the network at t. 

A common early or late arrival penalty function is added to stress the importance of 

arriving on time in real life, and we consider the effective path delay operators of the 

following form: 

2( , ) ( , ) 0.5 ( ( , ) )p p p At h D t h t D t h T                       (2.16) 

where AT  is the target arrival time. 

From the derivation effective path delay, we can see that it is a progress of mapping 

the departure rate to path delay. In other words, given 
( )ph t

to each path, then we will 

obtain the coordinate path delay. 

3  Implementation 

3.1 Mathematics implementation 

 DVI implement makes DUE principle formulate so that the DTA problem can be 

solved more conveniently. Than we rewrite the DUE problem according to the 

following theorem. We refer to Friesz(2011,2013) for detailed proofs.  

Theorem 1. Infinite-dimensional inequality formulation of DUE. The simultaneous departure-time-

and-path-choice dynamic user equilibrium of Definition 1 is equivalent to the following differential  
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Where 
(0) 0, ( )ij ij f ijy y t Q 

 is the boundary conditions. The solution of h is the final 

result that we want to achieve. 

There are many ways to solve DVI, here we convert it to fixed-point problem: 

* * *[ ( , )]ph P h t h                                     (3.2) 

And for each iteration, we will get a v value by solving the following flow conversation 

equation: 
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Where the diagram +[]  is equal to max{[],0} .If the difference between 1k

ph   and ( )k

ph t  

is less than a pre-given tolerance, the iteration will be terminated. 

 

3.2 Algorithm  

Here is a piece of pseudo code for the algorithm described above and this is also the 

blue print of how our real code is implemented. 

Algorithm 1  Computing ODE and fixed point iteration 

Initialization: path, timespan, arc, h0, Q(demand), epsilon (tolerance) et. 

for all i = 1 : num (OD pairs) 

  while condition is true            Difference between hk and hk+1 is larger than tolerance         

for j = 1 : num (paths)  

       for k = 1 : num (links) 

          solve ODE to get link volume                       equations 2.1-2.8 



       end for 

    end for                                                end solving ODE 

    get link delay ( , )
i ia p aD x h x    

    get effective path delay ( , ) ( , )Phi D t h F t h                 equation 2.16 

    solve equation 3.3 get a ijv  

    update hk+1 according to equation 3.4                      each v map to a hk 

end while 

end for 

Output: Phi, hk 

3.3 High performance computation implementation 

To enable computation of inputs with large graph size or large number of od pairs, 

we decided to integrate the parallel computing technology into our code. The ultimate 

goal of this implementation is using CUDA or other library concerning GPU. Here we 

only implement an early-stage version which is assisted by OpenMP library. 

OpenMP (Open Multi-Processing) is an application programming interface (API) that 

supports multi-platform shared memory multiprocessing programming in C, C++, 

and Fortran. In our case OpenMP or parallel computing can be used in the process of 

solving ODE (equation 2.1 to 2.8) and solving v for each od pair (equation 3.3), as these 

two processes happen to be the dominating cost resource in the final running time, the 

advantage of using parallel computing is prominent when the graph is enlarged and case 

is complicated to a certain degree, as we’ll show in the next section.  

4  Numerical example 

4.1 Small network  

We consider the small network summarized in Figure 2, with six-arc and five-node. 

There are two OD pairs {(1,3), (2,3)}W    among which, the following six paths are 

employed: 

1 2 3 4 5 6{3,6}, {1,2,6}, {1,2,4,5}, {3,4,5}, {6}, {4,5}p p p p p p       

We assume a fixed demand for OD pair(1,3) and (2,3) such that 13 400Q   and 

23 200Q  , the target arrival time Ta is 75.0 and 50.0 out of a 0.0 to 100.0 time span, the 

result are shown in Figure 2 and Figure 3. 

https://en.wikipedia.org/wiki/Application_programming_interface
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Figure 4 

Figure 4 shows the accumulated path volume throughout the whole time span, which 

indicates the people’s preference of paths.  

Here we take a closer look at the first path’s departure rate and unit cost function, which 

is shown in Figure 5. 

 

Figure 5 

This graph exhibits the typical characters of DUE thus proves the accuracy of our 

algorithm. And it also provides some inspiration to traffic planning: sometimes entering 

the network batch by batch will help improve the travel efficiency.  

4.2 Sioux Falls network 

Sioux Falls network (Figure 6) is much larger than small network since there are 24 

nodes, 76 links and thousands paths. Here we implement three different sets of data, which 

respectively contains 10 od pairs, 23 od pairs(all the od pair whose origin is node 1), and 

552 od pairs (all the possible od pairs in this graph).  
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Figure 6 

While the efficiency on each input will be discussed in the next subsection, here we’d 

like to show some randomly taken result. These results all behave as expected and prove 

the correctness of our algorithm. 

 

Figure 7 

 

Figure 8 
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Figure 9 

 

Figure 7: Departure rate and cost function of path No.30 in Siuoxfalls(10 pairs) 

Figure 8: Departure rate and cost function of path No.40 in Siuoxfalls(23 pairs) 

Figure 9: Departure rate and cost function of path No.6209 in Siuoxfalls(552 pairs) 

4.3 OpenMP efficiency 

   We used the lab machine with 12 cores and OpneMP will have 24 parallel processes 

when invoked. We first apply openMP on small graph. Since there is only 2 od pairs in 

this graph, the improvement of speed is not obvious, as shown in Figure 10. 

 

           Figure 10, Epsilon vs Running Time on small graph 
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However, when we start to run data input which is much larger like siouxfalls, the 

advantage of parallel computing starts to show. The following table lists the average 

time per iteration for different input. Since we are considering the average time then the 

epsilon or iteration number is irrelevant. 

         Figure 11 

In conclusion, we find that the algorithm with OpenMP implemented also 

outperform the one without OpenMP, and the gap between them become larger with a 

larger input.  

 

5  Dynamic network loading by PDEs 

The PDEs model here actually refers to the LWR model which originates from 

hydrodynamic model(Friesz,2013). This is a microscopic model that can capture 

several network traffic phenomena: 

(1).Queues and delay;  

(2).Density-velocity relationship;  

(3).First-in-first-out(FIFO); and 

(4).Route information. 

5.1 Partial dynamic algebraic systems (PDAEs) 

The analytical solution to the PDE allows us to rewrite the network loading 

procedure as a system of differential algebraic equations (DAEs) instead of partial 

differential algebraic equations (PDAEs)(Friesz,2013). For convenience, we denote the 

following diagrams and variables. 

( )f  The flow function of density 

( )  The density function of t, x 

( )p

a  
The proportion of link volumes in path p  

    ( )a

downN t  
The cumulative exiting flow on link a 

    ( )a

upN t  
The cumulative entering flow entering link a  
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( )a

inq t  
The flow rate entering link  

( )
out

aq t  
The flow rate exiting link 

( )aD t  The demand of flow rate out of link a 

( )aS t  The supply of flow rate into link a 

     ak  The speed of forward flow propagation 

     aw  The speed of backward flow propagation 

 

The initial flow propagation can be described as the following form: 

( , ) ( ( , ))
0

t x f t x

t x

  
 

 
                             (5.1) 

Because of the relation between ( )f and ( ) , the dynamic flow evolution formula 

(PDE) actually is a Nonlinear PDE, it’s difficult to solve it directly. In other words, it 

can be solved by approximate ways (Friesz,2013) or discretization methods (Han,2012). 

 

The proposed DAE system shown in 5.2-5.7 is given by Han(2012) 

Part 1: link model 
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Part 2 Junction model 
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Part 3 Link travel time 

( ) ( ( ))a a

down up aN t N t                                  (5.7) 

Finally, the link travel time is equal to the difference between cumulative entering 

volume count and exiting volume count. 

 

5.2 Computation implementations 



According to the formulations proposed by Han et al.(2012,2014), the algorithm 

are mainly composed of two parts, which are link model and junction model. The 

pseudo code listed below are mainly composed of two parts, one is solving PDE and 

outputting link delay, the other is solving fixed point iteration and outputting best path 

cost function and departure rate function. 

 

Algorithm 2: Computing dynamic network loading based on LWR model by C  

Initialization: path, timespan, arc, h0, Q(demand), epsilon (tolerance) et. 

for all i = 1 : num (OD pair) 

While condition is true        Difference between hk and hk+1 is larger than tolerance 

 for t =1 : num (timesteps) 

for i = 1 : num (links) 

Solve D  Get link demand                             equation 5.2 

Solve S  Get link supply                              equation 5.3 

for j = 1 : num (linkin) 

for k = 1 : num (linkout) 

       get turning ratio  ( )J

ij t                        equation 5.4 

end for  

end for  

end for                            

Calculate entering flow ,in jq                              equation 5.5 

Calculate exiting flow ,out iq                              equation 5.6 

end for 

get effective path delay ( , ) ( , )Phi D t h F t h    

get a ijv  in each iteration                                    equation 3.3                               

    update hk+1 according to equation 3.4                          each v map to a hk 

end while 

end for 

Output: Phi, hk 

 

5.3 Dynamic network loading 

    The calculation results can be seen in Figure 12 and 13. The Vertical difference 

between two horizontal lines denotes the length of link as is shown in left picture. In 

picture 13, Slant line illustrates the cumulative inflow and outflow, and the link travel 

time can be derivate from the horizontal difference of each two slant lines. 



 

Figure 12 Flow propagation             Figure 13 Cumulative vehicle count 

 

6  Conclusion and remarks 

   In this paper, we have presented the whole progress of dynamic traffic assignment 

including dynamic network loading and fix point iteration. In the part of dynamic 

network loading , we introduced ODE model and PDE model which were respectively 

proposed by Friesz and Han. The purpose of this project is aimed at solving the dynamic 

traffic assignment using parallel computing and then apply it to large scale graph to 

satisfy strict time requirements in real traffic assignment. 

   For ODE model, we apply OpenMP in our code, which is one kind of parallel 

computing. We succeed and obtain good assignment results. The parallel computing 

significantly fastened the solving speed as the same result compared with normal 

computation. In this way, it’s possible to apply this technology to computing big graphs 

and urban network planning. 

   For PDE model, it remains many works to do. We haven’t finish the entire code, 

but thanks to the Han (2014), we proposed the pseudo code, and the next step is 

realizing it by C. Finally, if possible, parallel computing will be also used to certify the 

high performance in dynamic traffic assignment. 
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