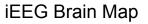
Decoding EEG Waves for Visual Attention to Faces and Scenes

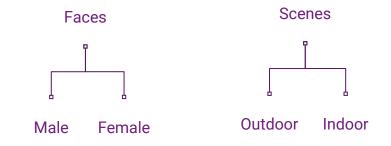
Taylor Berger and Chen Yi Yao



Mentors: Xiaopeng Zhao, Soheil Borhani

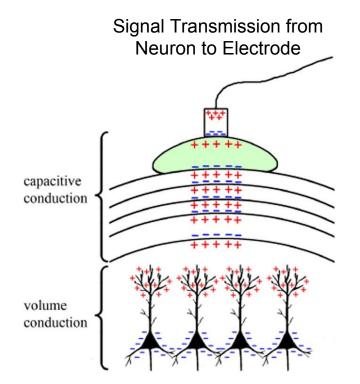
Brain Computer Interface

- <u>Applications:</u>
 - Medical Devices (e.g. Prosthetics, Wheelchairs)
 - Educational and Self-regulation
 - Games and Entertainment
 - Security and Authentication
- Invasive vs. Non-Invasive:
 - Intracranial ElectroEncephaloGraphy (iEEG)
 - ElectroEncephaloGraphy (EEG)

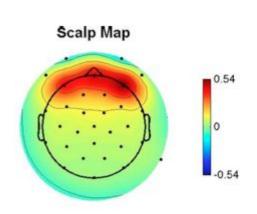

Research Objective and Setup

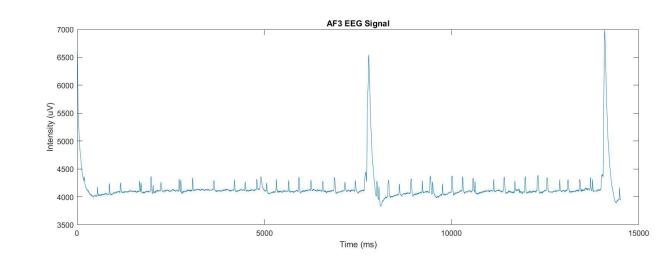
- <u>Objective:</u> Develop a neural network model to improve the test accuracy of the system based on extracted information from EEG signals
- <u>Setup:</u>
 - Emotiv EPOC for recording EEG signals
 - MATLAB/Simulink for data collection
 - MATLAB/Python for data analysis

Data Collection

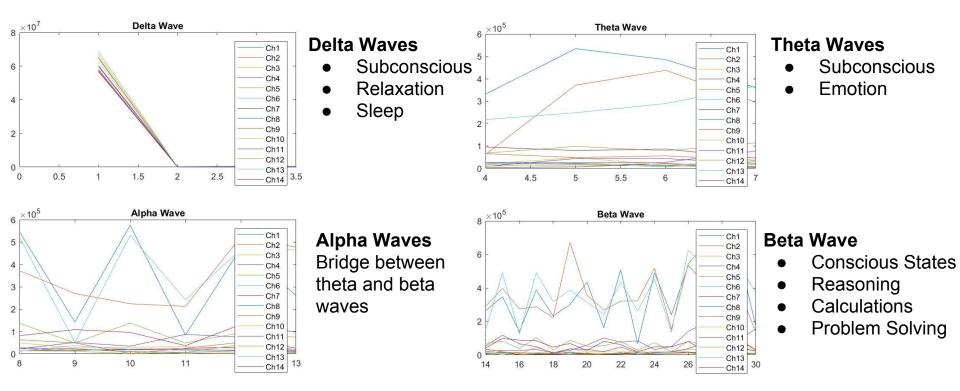

- 2 Subjects
- 2 Phases
 - <u>Phase 1:</u> Distinction between images
 - <u>Phase 2:</u> Distinction between superimposed images
- 8 Blocks each Phase (50 image trials / block)
- 14 Channels
- Time-Series Data Table

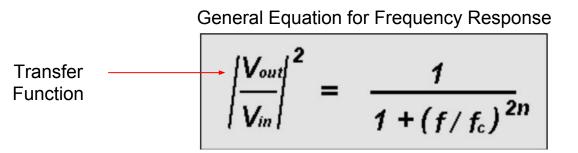
Block Number	Task-Relevant Image	Task-Irrelevant Image
1	Indoor	Outdoor
2	Male	Female
3	Indoor	Outdoor
4	Female	Male
5	Outdoor	Indoor
6	Male	Female
7	Outdoor	Indoor
8	Female	Male


EEG Waves


- Signals are produced by synchronized synaptic activity in the cortical neurons
- Measurable charge is created by the summation of multiple neuron dipoles
- Volume conduction allows for the propagation of EEG signals within the brain
- A capacitor is created to allow for the propagation between volumes
- Electrodes measure voltage fluctuations
 over time

Noise


- Inherent electrical properties and physical arrangement of different tissues
- Dipole Size Variance
- Muscle Twitches
- Eye Blinks


Img Ref: https://github.com/mne-tools/mne-python/issues/3757

Frequencies within the Brain

Pre-Processing Techniques

- **<u>Butterworth Filter:</u>** Signal processing filter that produces a frequency response that is maximally flat in the passband
 - Good all-around performance
 - High rate of attenuation

f = frequency at calculation $f_c = cut \text{ off frequency}$ n = number of elements $V_{in} = input \text{ voltage}$ $V_{out} = output \text{ voltage}$

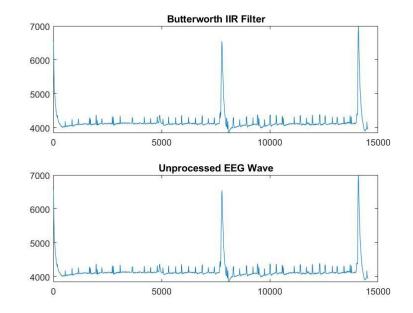
Pre-Processing Techniques

- **Zero Phase Filter:** Performs forward-backward filtering on the signal
 - Zero Phase Distortion

Inputs: x[n]= input sequence; h[n]= impulse response First Pass: $X(e^{jw})H(e^{jw})$ using FT of x[n] and h[n[Time Reversal: $X(e^{-jw})H(e^{-jw})$ Second Pass: $X(e^{-jw})H(e^{jw}) H(e^{-jw})$ Output Signal: $Y(e^{jw}) = X(e^{jw})|H(e^{jw})|^2$

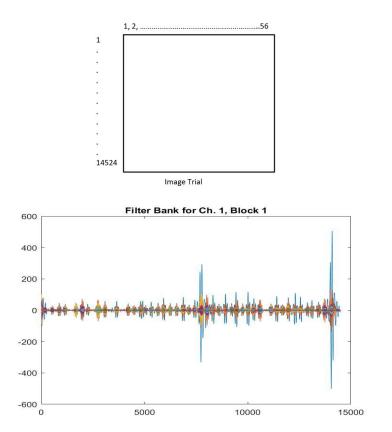
Low-Pass Filter

 Passes Signals with a frequency lower than a certain cutoff frequency and attenuates signals with a frequency higher than the cutoff frequency


Inputs:

Cut Off Frequency: 40

Outputs:


14x14524 data table for each block

• Not enough distinction

Band-Pass Filter

- Passes signals within a specific range of frequencies through the filter and attenuates the remaining frequencies on either side of the cutoff range
- Broken into 56 frequency ranges between 1 and 57 Hz for each Image Trial
- 400 Total Image Trials (i.e. 50 Image Trials for each block)

Filter Bank Sample Code

0/ Channel 1/		1	2	3
% Channel 14		- <mark>0.3</mark> 998	-0.1014	0.820
x14=rawEEG(:,14);	2	-0.5810	-0.6677	0.326
	3	-0.7646	-1.2280	-0.163
FilterOrder=4;	4	-0.9495	-1.7724	-0.633
SampleFreq=120:	5	-1.1345 -1.3184	-2.2913 -2.7752	-1.070
SampleFreq=128;	7	-1.5001	-3.2152	-1.792
i=1:	8	-1.6785	-3.6034	-2.057
while i<=56		-1.8522	-3.9324	-2.250
		-2.0202	-4.1961	-2.367
Lowcut14(i)=i;		-2.1 <mark>81</mark> 3	- 4 .3893	-2.406
		-2.3343	-4.5081	-2.369
Highcut14(i)=i+1;	13	-2.4781	-4.5500	-2.260
G	14	-2.6118	-4.5137	-2.086
WI_14(i)=2*Lowcut14(i)/SampleFreq;	15	-2.7342	-4.3994	-1.855
Wh 14(i)=2*Highcut14(i)/SampleFreg;	16 17	-2.8443	-4.2088 -3.9448	-1.576
	17	-2.9414	-3.9448	-1.202
Wn 14=[Wl 14(i) Wh 14(i)];				
	\sqrt{n}	1 'hor	adnaa	<u>م'</u> \.
[num14, denum14] = butter(FilterOrder, V	VII_1	4, Dai	lupas	5),
filtered data14(:,i)=filtfilt(num14, denum1	4 x1	4) [.]		
	·, / ·	•/•		

		14524x56 double
--	--	-----------------

	1	2	3	4	5	6
1	- <mark>0.3</mark> 998	-0.1014	0.8208	-1.2712	-0.3285	1.4084
2	-0.5810	-0.6677	0.3266	-2.1491	-1.3828	1.3101
3	-0.7646	-1.2280	-0.1633	-2.9161	-2.3443	1.0709
4	-0.9495	-1.7724	-0.6336	-3.5342	-3.1434	0.7103
5	- <mark>1.134</mark> 5	-2.2913	-1.0701	-3.9731	-3.7218	0.2615
6	-1.3184	-2.7752	-1.4599	-4.2118	-4.0369	-0.2317
7	-1.5001	-3.2152	-1.7920	-4.2396	-4.0648	-0.7192
8	-1.6785	-3.6034	-2.0577	-4.0563	-3.8023	-1.1495
9	-1.8522	-3.9324	-2.2508	-3.6729	-3.2672	-1.4756
10	-2.0202	-4.1961	-2.3674	-3.1100	-2.4971	-1.6597
11	-2.1813	-4.3893	-2.4065	-2.3976	-1.5465	-1.6778
12	-2.3343	-4.5081	-2.3696	-1.5727	-0.4834	-1.5227
13	-2.4781	-4.5500	-2.2609	-0.6778	0.6160	-1.2050
14	-2.6118	-4.5137	-2.0866	0.2413	1.6729	-0.7530
15	-2.7342	-4.3994	-1.8551	1.1380	2.6112	-0.2096
16	-2.8443	-4.2088	-1.5765	1.9677	3.3632	0.3710
17	-2.9414	-3.9448	-1.2621	2.6891	3.8747	0.9295

Feature Extraction

- Average Amplitude
- Max Amplitude
- Range of Amplitude

Input:

Individual Ch. Data 400x[14x(128x56)]

Output:

Collective Ch. Data 400x[56x14]

Average Potential for Block 1 Channels

	1	2	3	4	5	6	7
1	0.1258	0.0415	0.0407	0.0207	0.0060	0.0012	0.0030
2	0.1948	0.0272	0.0330	0.0131	6.2470e-05	0.0028	0.0023
3	0.0118	0.0109	0.0055	0.0016	1.6091e-04	3.8594e-04	4.5190e-04
4	0.0171	0.0101	0.0097	0.0019	4.4266e-04	0.0017	8.1484e-04
5	0.0030	0.0012	0.0014	4.2826e-04	1.1024e-04	4.4086e-04	2.3261e-05
6	2.0382e-05	0.0020	0.0016	7.1221e-05	1.1376e-04	2.6157e-04	1.5509e-04
7	0.0017	0.0014	9.4906e-04	0.0013	6.1541e-04	8.8464e-05	7.9967e-04
8	0.0048	0.0010	6.8309e-04	0.0010	0.0014	4.7255e-05	7.7436e-04
9	0.0021	0.0023	0.0011	0.0013	0.0010	7.4907e-06	6.2452e-04
10	3.7168e-04	8.3394e-04	7.7319e-04	0.0015	7.5122e-04	4.1795e-05	4.6069e-04
11	0.0028	0.0096	0.0066	0.0017	2.8933e-04	3.5309e-04	1.5966e-05
12	0.0066	0.0148	0.0086	0.0026	2.3404e-04	8.8439e-04	7.7230e-04
13	0.1805	0.0234	0.0364	0.0182	0.0064	0.0020	0.0024
14	0.1163	0.0593	0.0238	0.0086	0.0015	0.0037	0.0049

Neural Network Model

CNN - TensorFLow | CNN - Keras | RNN - LSTM

#Training examples = 360
#Testing examples = 40

CNN - TensorFlow

Epochs = 100

Training Size = 14 (Channels) * 128 (Time Points)

Output y = 0 or 1 (Binary Classification)

Cross entropy = reduce_mean

Why TensorFlow:

Because of the rectangular input size, it is necessary to look into details of CNN to adjust appropriate parameters.

Layer	1 CONV	2 CONV	3 CONV	4 FC	5 FC
Filter	5 * 14 * 1 #1 = 6	5 * 14 * 6 #2 = 12	5 * 14 * 12 #3 = 24	24 * 7 * 32	2 (output)
Activation	relu	relu	relu		softmax
Pooling	1 * 2	2 * 2			

CNN - Keras

Original input x.shape = 128 * 14 (rectangle)

 \rightarrow Remove the first 2 data in each channel

 \rightarrow x.shape = 126 * 14 = 42 * 42 (square)

 \rightarrow Implement by Keras

Why:

Since removing 2 data in each channel gives nearly no difference, input data can be adjusted in to square size and hence Keras Framework is applicable in this case.

Pros:

It becomes more efficient to iterate parameters and change the structure of the neural network to build the best model.

RNN - LSTM

- A simple many-to-one model with LSTM Layer.
- Treat EEG Signals as time series input.
- Why LSTM: it is more suitable for longer-term dependency and longer sequent input data.

model.add(LSTM(128, input_shape=(timesteps, 14)))

model.add(Dense(1,activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy'])

Model Results - Filtered data

CNN - TensorFlow

(45%)

test accuracy on Phase1 0.45

CNN - Keras (42.5%)

RNN - LSTM (57.5%)

CPU supports i

reuub17user0@REUUB-17:~/attention/Attention/Original\$ python oringinal_modelcnn.
ру
/opt/anaconda3/lib/python3.6/site-packages/h5py/initpy:36: FutureWarning: C
onversion of the second argument of issubdtype from `float` to `np.floating` is
_deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type '
<pre>fromconv import register_converters as _register_converters</pre>
/opt/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:41: Depre
cationWarning: This module was deprecated in version 0.18 in favor of the model_
selection module into which all the refactored classes and functions are moved.
Also note that the interface of the new CV iterators are different from that of
this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)
EEGimg_subj.csv
2018-06-26 11:51:24.336570: I tensorflow/core/platform/cpu_feature_guard.cc:137]
Your CPU supports instructions that this TensorFlow binary was not compiled to
use: SSE4.1 SSE4.2
step 0, training accuracy 0
step 10, training accuracy 0.5
step 20, training accuracy 0.5
step 30, training accuracy 0.5
step 40, training accuracy 0
step 50, training accuracy 0.5
step 60, training accuracy 0.5
step 70, training accuracy 0.5
step 80, training accuracy 0.5
step 90, training accuracy 0.5
step 100, training accuracy 0.5
step 110, training accuracy 0
step 120, training accuracy 0
step 130, training accuracy 0.5
step 140, training accuracy 0.5
step 150, training accuracy 1
step 160, training accuracy 0
step 170, training accuracy 0.5
step 180, training accuracy 0.5
step 190, training accuracy 1

(1 5/20 /360 [=====================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val_loss: 0.695 val acc: 0.4250	2018-06-26 11:37:42.791765: I tensorflow/core/platform/cpu_feature_guard.cc:137] You structions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2
vac_acc: 0.4250 ch 6/20	- 34s - loss: 0.6983 - acc: 0.5417
300 [Epoch 2/20
val acc: 0.4250	
ch 7/20	- 34s - loss: 0.6997 - acc: 0.4417
/360 [========================] - 2s 5ms/step - loss: 0.6937 - acc: 0.4750 - val_loss: 0.696	Epoch 3/20
val_acc: 0.4250	- 34s - loss: 0.6960 - acc: 0.4806
ch 8/20	Epoch 4/20
/360 [=======================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val_loss: 0.696	- 34s - loss: 0.6959 - acc: 0.4944
val_acc: 0.4250	Epoch 5/20
ch 9/20	- 34s - loss: 0.6956 - acc: 0.5056
/360 [==================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val_loss: 0.695 val acc: 0.4250	Epoch 6/20
vac_acc: 0.4230 ch 10/20	- 345 - Loss: 0.6966 - acc: 0.4389
/360 [===========================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val loss: 0.695	Epoch 7/20
val acc: 0.4250	- 34s - loss: 0.6977 - acc: 0.4806
ch 11/20	
/360 [=======================] - 2s 5ms/step - loss: 0.6937 - acc: 0.4639 - val loss: 0.695	Epoch 8/20
val acc: 0.4250 -	- 35s - loss: 0.6966 - acc: 0.4528
ch 12/20	Epoch 9/20
/360 [========================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val_loss: 0.695	- 35s - loss: 0.6979 - acc: 0.4778
val_acc: 0.4250	Epoch 10/20
ch 13/20	- 35s - loss: 0.6986 - acc: 0.4583
/360 [=======================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val_loss: 0.695	Epoch 11/20
val_acc: 0.4250 ch 14/20	- 35s - loss: 0.6980 - acc: 0.4694
/360 [===========================] - 2s 5ms/step - loss: 0.6937 - acc: 0.5083 - val loss: 0.695	Epoch 12/20
yal acc: 0.4250	- 345 - loss: 0.6985 - acc: 0.4528
61 15/20	Epoch 13/20
/360 [=======================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val loss: 0.695	
val acc: 0.4250	- 34s - loss: 0.6958 - acc: 0.5083
ch 16/20	Epoch 14/20
/360 [========================] - 2s 5ms/step - loss: 0.6937 - acc: 0.5000 - val_loss: 0.695	- 34s - loss: 0.6969 - acc: 0.4778
val_acc: 0.4250	Epoch 15/20
ch 17/20	- 34s - loss: 0.6943 - acc: 0.5139
/360 [======================] - 2s 5ms/step - loss: 0.6937 - acc: 0.4944 - val_loss: 0.696	Epoch 16/20
val_acc: 0.4250 ch 18/20	- 34s - loss: 0.6960 - acc: 0.4417
/360 [===========================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val loss: 0.696	Epoch 17/20
yal acc: 0.4250	- 345 - loss: 0.6944 - acc: 0.5028
(h 19/20	Epoch 18/20
/360 [====================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val loss: 0.696	- 34s - loss: 0.6973 - acc: 0.4917
val acc: 0.4250	
ch 20/20	Epoch 19/20
/360 [========================] - 2s 5ms/step - loss: 0.6938 - acc: 0.5083 - val_loss: 0.695	- 34s - loss: 0.6954 - acc: 0.5028
val_acc: 0.4250	Epoch 20/20
40 [=======================] - 0s 365us/step	- 34s - loss: 0.6970 - acc: 0.4833
t loss: 0.6959069728851318	Accuracy: 57.50%
t accuracy: 0.425	

Model Results - Filtered data

 CNN - TensorFlow
 CNN - Keras
 RNN - LSTM

 (45%)
 (42.5%)
 (57.5%)

Remark:

- 1. Basically the accuracy is still at a chance level.
- 2. RNN model runs for a longer time.
- 3. Change of parameters does not improve the results.
- Random split of training and testing sets gives random evaluation results. (Cross - Validation)

Prediction Output

- ★ With Cross Validation (10-fold), the prediction of 1st split is output.
- ★ Prediction of 40 testing examples are almost the same.
- \star Trained model cannot differentiate input signals.

Reason:

- 1. Covered by much noise, EEG signals nearly have no difference \rightarrow **Better Preprocessing**
- 2. EEG intensity signals analysis and Neural Network maybe do not match up \rightarrow Turn to Frequency Analysis.
- 3. Limited by small number of trials. → Data Augmentation

True labels:

[1 0]

[1 0]

[1 0]

[1 0]

[1 0]

. . .

[1 0]

	[[0.573349	0.42665097				
	[0.57279444	0.42720553				
S:	0.5726019	0.42739812				
-	0.57256806	0.42743188				
	0.57255125	0.42744875				
	0.57255936	0.4274406				
	0.5725237	0.42747626				
	0.5725888	0.42741117				
	0.5725373	0.42746276				
	0.5726254	0.42737457				
	0.57305837	0.4269417				
	0.57249385	0.42750618				
	0.57252014	0.42747986				
	0.5725681	0.42743188				
	0.5725568	0.4274432				
	0.57255286	0.42744717				
	0.57255006	0.4274499				
	0.5722837	0.4277163				
	0.5726323	0.42736766				
	0.57258546					
	0.57261544	0.42738461				
	0.5725482	0.42745182				
	0.5725212	0.42747885				
	0.5724686	0.42753142				
	0.5726335					
	[0.5725341	0.42746595				
	[0.57248706	0.42751294				
	0.57304364	0.42695633				
	[0.57323384	0.4267661				
	[0.5726043	0.42739567				
	[0.57250917	0.4274909				
	0.5726551	0.42734498				
	0.57245874	0.42754126				
	[0.5734186	0.42658138				
	[0.57226557	0.42773443				
	[0.5724375	0.42756245				
	[0.5724966	0.42750338				
	[0.5729259	0.4270741				
	0.572586	0.42741403				
	[0.5726358	0.42736417]			
	Train on 360	samples, va		on	40	sampl

les

0 12665007

Future Steps

- 1. Try to remove some "bad" channels signals before inputting into models. (Preprocessing)
- 2. Deep Belief Neural network with Stacked Denoising Autoencoder. (Popular model for analyzing EEG)
- 3. Extract more features from each example. (Enlarge size of each input)
- 4. Cut the whole time domain (1 second) by a window with fixed size for FFT analysis. (Increase #examples)

Thank you!

Q & A