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Abstract 

Attention is a multidimensional cognitive function that can be broken down into 

a series of filtering and searching subprocesses. Deficiencies in attention are 

commonly seen in many brain disorders, such as Alzheimer’s Disease and 

Attention Deficit Disorder (ADD), have an impact on an individual's overall 

cognitive and perceptual capabilities. Many studies have been conducted to 

evaluate and train brain computer interfaces (BCI) to distinguish between brain 

signals released during periods of attention in an individual with average and 

deficient cognitive ability. This study focused on distinguishing between 

electroencephalography (EEG) signals released during periods of visual 

attention to faces and scenes for individuals of normal cognitive ability. Within 

this work, signal pre-processing methods, such as band-pass filters and the 

Continuous Wavelet Transform (CWT), and deep learning paradigms were 

tested and optimized to increase decoding accuracy. Data augmentation was 

also utilized and tested to increase the model training size to increase decoding 

accuracy.  

 

Keywords: Brain Computer Interface (BCI), Electroencephalography (EEG), Continuous 
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I. Introduction 

 

In this report, we will outline the purposes and objective of our study, the experiment’s data 

collection process, the signal processing methods, and the deep learning methods used to 

optimize the model. This paper will also present the results and conclusions about the models 

developed during this project.  

 

i. Objective 

The goal of the project was to develop a filtering method deep learning model to complete a 

binary classification of EEG signals collected during a period of visual attention. High testing 



accuracy in a deep learning model is critical to the BCI platform’s applicability in real-world 

applications. As a means of optimizing this accuracy, the project objectives are the following:  

● Compare signal pre-processing techniques to determine which approach provides the 

optimal deep neural network input. 

● Apply deep learning neural network parameters to optimize the classification testing 

accuracy. 

● Determine the impact of utilizing data augmentation methods to increase the training 

data size. 

 

ii. Background Knowledge: EEG 

Electroencephalogram (EEG) is a monitoring method that collects the spontaneous electrical 

activity on the scalp of the brain in real time [1]. EEG data is collected through electrodes as a 

summation of synchronous activity of surrounding neurons with “similar spatial orientation” 

[2]. Unlike comparative brain monitoring techniques, EEG is a low-cost, non-invasive method, 

making it an area of intrigue in the development of BCI applications.  

 

II. Experimental Methods and Materials 

 

This section outlines the material and components used in the construct of this BCI platform 

and the experimental protocol used to collect the EEG data from the participants during the 

study. The layout of the experimental blocks and image categories are also explained in detail 

in this section. 

 

i. Data acquisition 

The BCI platform for this experiment consisted of a wireless EEG headset, dual PC monitors, 

and data analysis software. Raw EEG data was collected noninvasively through the 14 channel 

Emotiv EPOC EEG recording headset. Before each application, channel electrodes were 

hydrated and examined to ensure quality conductance. The placement of each channel was 

based on the 10-20 international system. This location system ensures that data from frontal, 

temporal, and occipital lobe regions of the scalp is collected. The labeled locations of these 

electrode channels are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The 

sampling frequency for the headset was set to 128 Hz for the duration of the experiment. During 

the data collection process, an initial filtering technique was applied the raw signal to reduce 

noise. Each signal was filtered using a high-pass filter of 0.2 Hz and a low-pass filter of 43 Hz. 

The headset transmits the signals to the collection software through a Bluetooth connection. 

The data collection software used in this experiment was MATLAB and Simulink. Using this 

platform, the raw EEG signals were collected and stored as time-series data. 

 

ii. Experimental protocol 

The experimental procedures and data acquisition methods for this study were approved by the 

Institutional Review Board at the University of Tennessee. All 38 study participants self-

reported good health and were a mixture of male and female subjects. Each subject voluntary 

completed the experiment’s eight training blocks. All participants had normal or corrected-to-

normal vision and had no history or neurological or psychological disorder (based on self-



report). Before beginning the experiment, written consent was obtained for all participants. To 

complete each experimental block, a PC with dual monitors was set up in front of the subject 

and the administrator. One monitor was for the administrator to control the experiment. The 

second screen was positioned in front of the subject to present the image stimuli. Seated 

approximately 50 cm in front of the monitor, the subjects positioned themselves with one hand 

resting on their lap and the other on the computer mouse. The computer mouse was used for 

indicating behavior responses as a secondary means of ensuring visual attention. Aside from 

the mouse signals, subjects were instructed to limit excessive body movement, and pay 

attention to the monitor for the entirety of each phase. 

   

iii. Experimental tasks 

The experiment consisted of eight trial blocks of 50 images per trial. Between each block, 

subjects received a break to limit the fatigue. Before each block, an instructional slide for image 

category and subcategories was shown.  The 50 image stimuli within each block were an 

assorted mixture of two subcategories. This experiment used four subcategories: indoor scenes 

vs. outdoor scenes and male faces vs. female faces. Images used in this experiment were black 

and white and equal in size. Each image was placed on the screen in front of the subject for a 

duration of 1000 ms before transitioning into a black blank screen. A 1-1.5 seconds blank 

screen between each image stimuli allowed the subject to ready themselves for the next image. 

To prime the subject to the category, participants distinguished between task-relevant images 

(ex. male) and task-irrelevant images (ex. female). Table I outlines each block’s task-relevant 

and irrelevant subcategories. For task-relevant images, subjects responded with keyboard 

signal. This experimental model ensured the participant gave visual attention to the image 

category. Binary classification between image categories was established for each image 

category based on the hypothesis that brain signals contained common features between image 

subcategories.   

 

Table I. The task-relevant and task-irrelevant images for each experimental block.  

 
iv. Our Contribution 

We have applied signal processing methods and deep learning techniques, such as neural 

networks, to create a general binary classification model for signal analysis.  

 

 

 

 

III. Pre-Processing Methodology 



 

This section outlines the multiple signal processing methods and feature extraction techniques 

tested on the EEG signals. Both the band-pass filter and the Continuous Wavelet Transform 

(CWT) are used within this study in multiple approaches and are explained in detail in the 

following section. Subsequently, this section also outlines the use of data augmentation to 

increase the data input into the model and discusses the biological implications of this method. 

 

i. Pre-Processing 

Due to the nature of EEG signal collection, the recorded signals are prone to various artifacts 

such as eye blinks and facial twitches. These muscle artifacts create noise in the signal that 

could hinder the BCI platform’s ability to evaluate and train the model. To limit the effects of 

these movements within the results of the experiment, the signal was analyzed and pre-

processed. Within this study, the pre-processing techniques focused on the frequency domain 

of the signal. The study relied on the five accepted frequency ranges commonly analyzed 

within the brain: Delta [0.5-3 Hz], Theta [3-8 Hz], Alpha [8-12 Hz], Beta [12-30 Hz], and 

Gamma [>30 Hz] [3]. A description of the signal processing methods used in this study is 

given below.  

 

i.1 Band-Pass FIR Filter 

A band-pass FIR filter with a minimum order was run on each channel of the EEG signal [4]. 

The band-pass filter was set with a high-pass filter of 3 Hz and a low-pass filter of 59 Hz. From 

this filter, 56 frequency bands were constructed with a width of 1 Hz. For each frequency band, 

five distinguishing statistics were extracted: mean, kurtosis, variance, skewness, maximum [5]. 

The output of this filter was fed into a Convolutional Neural Network (CNN) model with an 

input shape of 56x14x5, where the five distinguishing signal statistics were stacked. Picture I 

is a visual of the filter output for channel 1, image block 1.  

 

Picture 1. Band-Pass Filter for Channel 1, Image Block 1 prior to feature extraction 

 
 

i.2 CWT - Statistical Parameters 



Computed by the analytic Morlet wavelet, the CWT was applied to each channel of the EEG 

signal [6]. Frequency bands for the Theta, Alpha, Beta, and Gamma frequency ranges were 

extracted. Within each frequency range, three distinguishing statistics were extracted: mean, 

maximum, and variance. The output of this filter was input into the CNN model with an input 

shape of 3x14x4, where the four frequency ranges were stacked in the third dimension.  Pictures 

2-5 are a visual for the maximums for channels one through 14 in each frequency band.  

 

Picture 2. Statistical Parameter: Maximum, for Theta Frequency Band 

 
 

Picture 3. Statistical Parameter: Maximum, for Alpha Frequency Band 

 
 

 

 

 

 

 

Picture 4. Statistical Parameter: Maximum, for Beta Frequency Band 



 
 

Picture 5. Statistical Parameter: Maximum, for Gamma Frequency Band 

 
 

i.3 CWT - 2D Image Input 

The CWT was applied to each channel of the EEG signal by computing the analytic Morlet 

wavelet. For each channel, 42 signals were decomposed and unaltered prior to being input into 

the CNN model. The output of this filter was input into the CNN model with an input shape of 

42x128x14, where the 14 channels were stacked as images. Picture 6 is a visual of the output 

array for channel 1, image trial 1.  

 

 

 

 

 

 

 

 

 

Picture 6. CWT Filter for Channel 1, Image Trial 1 



 
 

ii. Data Augmentation 

When compared to other fields, BCI platforms have a limited data set on which the model is 

expected to train and test. These limited training datasets do not utilize the full capabilities of 

a deep learning model, when compared to models who use huge training sets in order to extract 

distinguishable features. Following methods that have been previously explored and tested, we 

have integrated a data augmentation method to increase the available training set for the deep 

learning model [7]. The split-and-combination method, developed by Fabien Lotte, was applied 

to EEG signals to generate augmented data [8]. The validity in EEG data augmentation is 

disputable between neurobiologists and computational sciences. By nature, EEG signals are a 

considered continuous. As result, each data point within the EEG signal is dependent on the 

surrounding data points. This method of data augmentation does not preserve the continuous 

nature of the signal. 

 

ii.1 Split-and-Combination Method 

Data augmentation is applied to the model prior training data set of the model. The training set 

for each model consists of 360 randomly selected image trials. These 360 image trials are take 

and divided into the binary image categories, faces (label 1) and scenes (label 0). After this 

separation, all channel signals within the EEG image trial are cut into k segments. The number 

of segments, k, must be an integer and a factor of the number of sampling points within each 

signal. In our model, the length of each signal was 128 or 126, dependent on the signal 

processing method applied. Once the signal was segmented, signal segments were randomly 

selected from each signal within the image category and combined with k number of segments 

in the corresponding order, outline in Picture 7. By applying this method, 600 artificial signals 

with label 0 and 600 with label 1 are created and therefore 1600 examples are used for model 

construction. 

 



Picture 7. Split-and-Combination Method for EEG Data Augmentation [8] 

 
 

IV. Deep Learning Model 

 

To conduct the binary classification of the collected EEG signals, supervised deep learning 

models were employed. To determine the best neural network architecture, a Convolutional 

Neural Network (CNN) and Recurrent Neural Network (RNN) were created and implemented 

using Keras framework. Each model was evaluated with input data from different 

preprocessing methods previously outlined in the report. For each subject, there are 400 

examples in total valid: 200 with label 0 (scene image) and 200 with label 1 (human face 

image). Models are trained on 360 image trial examples and tested on the remaining 40 image 

trial examples.  

 

i. Raw Signal Modeling 

As a means of determining which model architecture to use, a baseline test on the minimally 

filtered EEG data was conducted. Low-pass filtering with a Nyquist cutoff of 40 Hz was applied 

to the signal prior to the data being input into the models. The structures of both the CNN and 

RNN models are described below in detail.  

 

i.1 Convolution Neural Network 

After running the signal through a low-pass filter, the input shape for each image trial was 128 

time points by 14 channels. In order to create a perfect square for the input shape, it was 

determined that the first two time points would be removed, reducing the image trial shape 

down to 126 time points by 14 channels. Each image trial could then be reshaped to an input 

size of 42 by 42. The CNN model outlined in Table II includes two-dimensional convolutional 

layers with a kernel size of three-by-three. Max-Pooling layers are also incorporated into the 



model with strides sizes of two-by-two. Prior to fitting and compiling the model two fully 

connected layers, with 128 and 2 nodes sequentially, are incorporated. The structure of this 

model is outlined below: 

 

Table II. Baseline CNN Model Structure  

 

 

Input 

(42×42) 

conv3×3-6 conv3×3-12 conv3×3-24 FC-128 FC-2 

ReLU ReLU ReLU ReLU Softmax 

Max_Pooling Max_Pooling Max_Pooling   

 

i.2 Recurrent Neural Network  

Within this study, the EEG signals were collected as time-series. While CNN models have been 

a primary approach applied to EEG signals in BCI platforms, many previous studies have 

employed RNN models as a point of comparison due to their sequential behavior  [9]. A simple 

many-to-one RNN was constructed with an LSTM layer. This model layout was chosen due to 

its distinguishment as a comparatively more suitable architecture for a longer time-dependent 

input. After being passed through the low-pass filter, the EEG signal was formatted as 128 time 

points by 14 channels for each image trial. The RNN model structure is described below:  

 

Table III. RNN model structure 

model.add(LSTM(128, input_shape=(timesteps, 14))) 

model.add(Dense(1,activation='sigmoid')) 

model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy']) 

 

i.3 Conclusion 

After running the EEG signals through each of the models, the CNN model gave a classification 

accuracy of 50%, chance level, and the RNN model gives a classification accuracy of 57.5%. 

While the RNN model provided the better results on the minimally filtered EEG data, it was 

decided that the CNN model would be utilized in future model development. Analyzing the 

results of these models, it was concluded that pre-processing and data augmentation will be 

important to the optimization of testing accuracy.  

 

ii. Cross-Validation & Random Seed 

To ensure reproducible results from the model, random seeding was fixed into the development 

of the neural network. K-Fold cross validation employs a method of data splitting to ensure 

that the training data was randomly chosen for each fold to eliminate the possibility of selecting 

extreme testing data. To make the model more robust, 10-fold cross-validation was applied to 

evaluate the performance of the model. The training-to-testing ratio was set to 0.9 for each fold. 



Each model was evaluated using the average testing accuracy from each fold and standard 

deviation. 

 

iii Signal Processing: Band-Pass 

This section outlines the CNN modeling development and optimization process for the data 

output by the band-pass filter. The results of this model are also explained in detail below.  

 

iii.1 Input Data & Model Type 

As previously outlined in the Pre-Processing Methodology section, the data size after filtering 

the signal through the band-pass filter is a 56×14×5 array for each image trial. To prepare the 

signal for the model, each image trial was reshaped into 28×28×5 array. Within this model, 

data augmentation was applied across all 400 image trials prior to the pre-processing. In total 

600 artificial image trials were generated for each face and scene label for a complete image 

trial count of 1600. The CNN model uses three convolutional layers with a max-pooling size 

of two-by-two and is followed by two fully connected layers with 56 nodes and 1 node 

sequentially. Two-dimensional and three-dimensional convolutional layers were tested and 

evaluated. The number of layers was optimized by testing and comparing the accuracy of 

models with three to seven layers and different optimizers are tested. The model with the best 

testing accuracy was a three-dimensional CNN with an Adam optimizer. The structure of this 

model is outlined below:  

 

Table IV. CNN Model Structure for Multiple Extracted Features Input 

 

 

Input 

(28×28×5×1) 

conv3×3×3-6 conv2×2×2-12 conv3×3×3-24 FC-56 FC-1 

ReLU ReLU ReLU ReLU Sigmoid 

 Max_Pooling 

2×2×2 

Max_Pooling 

2×2×2 

  

 

iii.2 Results 

Different numbers of epochs and models with early stopping were tested and evaluated. After 

the completion of the tests, it was concluded that the model with 55 epochs and no early 

stopping was the best structure (see Table V).  

  

Table V. Ten-Fold Cross-Validation Prediction Results over Subject 1 for Multiple Extracted 

Features Input 

3D CNN with Early Stopping  Mean (std) = 74.38%     (3.61%) 

Batch Size = 1     Patience = 10 Max = 80.62%     Min = 66.88% 

3D CNN  Mean (std) = 76.19%     (6.64%) 

Batch Size = 1     Epoch Number = 55 Max = 85.62%     Min = 64.38% 

 

 



iii.3 Conclusion 

It was determined that the method of data augmentation applied was susceptible to information 

leaking. As a result, the test accuracy from this model and filtering technique cannot be 

considered as accurate. To prevent information from leaking, data augmentation in future 

models should not be integrated across all image trials. For future models, data will be 

augmented within each fold across the training datasets only. Applying data augmentation in 

this method will prevent information leaking and should produce more reliable results.  

 

iv Signal Processing: CWT - Statistical Parameters 

This section outlines the CNN model developed for the CWT filter with extracted statistical 

parameters outlined in the Pre-Processing Methodology section of the report. Below is a 

description of the model development and optimization process. The results of this model are 

also described below.  

 

iv.1 Statistical Parameters Input 

After being filtered, the output data is in the shape of a 3x4x14 array for each image trial. To 

prepare the data for CNN model, the first and the 14th channels were removed to create a 

3x4x12 array for each image trial. When considering which channels to remove, the 

vulnerability to noise was evaluated. The positioning of the 1st and 14th electrodes left the 

channels susceptible to eye movement artifacts more so than any other channel. By cutting 

these two channels out of the model, we reduced the possibility of this type of noise affecting 

the results of the model. After the two channels were removed, the input array was reshaped to 

a 6x6x4x1 for each image trial. The CNN structure for this data input is depicted in Table VI.  

 

Table VI. CNN Model Structure for Three Extracted Features based on CWT Input 

 

 

Input 

(6×6×4×1) 

conv 2×2×2-6 conv 2×2×2-12 conv 2×2×2-24 FC-10 FC-1 

Linear Linear Linear Linear Sigmoid 

 Max_Pooling 

2×2×2 

Max_Pooling 

2×2×2 

  

 

iv.2 Results 

During the model optimization process, different numbers of epochs and batch sizes were tested 

with only original data. After the completion of the test, it was concluded that the optimal batch 

size and epoch number combination for this input was 50 and 100 sequentially as depicted in 

Table VII.  

 

 

 

 

 

 



Table VII. Ten-Fold Cross-Validation Prediction Results over Subject 1 for Three Extracted 

Features based on CWT Input 

Batch size =50            Epoch Number = 100 

Mean (std) = 62%     (7.81%)    Max = 75%     Min = 47.5% 

 

v Signal Processing: CWT - 2D Image 

This section outlines the CNN model developed for the CWT filter for the two-dimensional 

that was described in detail in the Pre-Processing Methodology section of the report. Below is 

a description of the model development and optimization process. The results of this model are 

also described below.  

 

v.1 2D Image Input 

After being filtered, the signal output is in the shape of a 42x128x14 array for each image trial. 

To prepare the signal data for the model, the first and the last data points were removed from 

the signal to create an array size of 42x126x14 for each image trial. After these two data points 

were removed, the array was reshaped to an input size of 42x42x42 for each image trial. These 

arrays were treated as images and input into three-dimensional CNN model. Different 

optimizers were tested and applied and the model with the best performing model with an 

Adam optimizer is described below: 

 

Table VIII. CNN Model Structure for CWT Images Input 

 

 

Input 

42×42×42×1 

conv 

3×3×3 

-6 

conv 

3×3×3 

-12 

conv 

3×3×3 

-24 

conv 

3×3×3 

-24 

conv 

3×3×3 

-48 

FC-10 FC-1 

Linear Linear Linear Linear Linear Linear Sigmoid 

  Max_Pooling 

2×2×2 

 Max_Pooling 

2×2×2 

  

 

v. 2 Results 

The model was tested and optimized for different batch sizes and epoch numbers with only 

original data from subject 1. After the completion of the tests, it was concluded that the optimal 

model was determined to be a batch size of 180 and 30 epochs. The results are outlined below: 

 

Table IX. Ten-Fold Cross-Validation Prediction Results over Subject 1 for CWT Images 

Input 

Batch Size = 180                                      Epoch Number = 30 

Mean (std) = 71%     (6.04%)                 Max = 82.5%                           Min = 60% 

 

 

V. Conclusion 



Within this section, the pre-processing and deep learning models will be evaluated and 

compared. The best performing pre-processing method and model will be applied across all 38 

subjects. By comparing the mean and standard deviation of each model, the best performing 

model was the CNN model with the 2D image input. Run on the data output by subject one, 

the model performed with an average accuracy of 71% and a range of 60% to 82.5%, as 

depicted in Table IX. This individual model was taken and applied to the remaining 38 subjects 

as a general model. The results of this test can be seen in Appendix I: Table X.  

 

The model was also evaluated after applying data augmenting to the training dataset within 

each fold to keep the datasets independent. Due to the new nature of the data, the number of 

epochs was reduced to 23 to prevent overfitting. Each CWT decomposed wave is split into k 

segments (k is a factor of 126) and randomly pick each segment and combine them together in 

order. Each label is augmented to produce 600 new image trial arrays. Therefore the model is 

trained with 1560 examples and tested on 40 examples.  

 

Several factors (1, 2, 3, 6, 7, 9, 14, 18, 21, 42) of 126 were tested in data augmenting method 

on subject 33 to determine the optimal number of splits. After this test, it was concluded that 

the optimal number of segment splits was three (see Appendix II: Table XI). After the 

application of the data augmenting method, the average accuracy over 38 subjects improved 

by 0.76%. Within this margin of improvement, 24 subjects increased in testing accuracy, two 

subjects produced the same accuracy, and 12 subjects declined in accuracy. Within this new 

model, subject 20 saw the most improvement of 4.5% (see Appendix III: Table XII). These 

results suggest the importance of developing optimized individual models to test the impact of 

artificial data on each subject.  

 

Different parameters, such as augmenting size, were also evaluated. As augmenting size 

increased to 1800 segments per image label, the average testing accuracy across all 38 subjects 

also noticeably increased. The average testing accuracy across all subjects improved by 1.11%, 

and subject 4 produced the highest individual improvement of 5.25%. In total, 29 subjects 

produced improvements in their testing accuracy, 1 subject produced the same result, and 8 

subjects declined in accuracy. A breakdown of these results is outlined in Appendix IV: Table 

XIII.  

 

VI. Future Work 

 

Building off the results of this study, future work will be done in the development of the CWT 

pre-processing technique and the implementation of augmented data. For the new CWT 

approach, a three-dimensional image will be constructed from the decomposed signal, 

representative of the RGB matrix, for each channel. This matrix will be treated as an image and 

fed through the CNN model. Another approach that will be tested is the increased amount of 

augmented data. As our results depict, increasing the number of augmented signals developed, 

increased the accuracy of the CNN model. We would like to run further tests to optimize this 

approach.  
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VIII. Appendix 

 

Appendix I: Table X. Ten-Fold Cross-Validation Prediction Results over 38 subjects 

 (30 epochs, batch size = 180, Max/Min accuracy in bold ) 

Subject  Mean (std) Min - Max Subject Mean (std) Min - Max 

1 71% (6.04%) 60%-82.5% 20 67.75% (6.37%) 55.0%-77.5% 

2 71.75% (4.88%) 62.5%-80% 21 67.75% (7.45%) 57.5%-85.0% 

3 62.5% (5.92%) 55%-70% 22 68% (6%) 57.5%-77.5% 

4 70.25% (5.64%) 65%-77.5% 23 69.5% (5.57%) 60%-77.5% 

5 76.5%  (5.15%) 65.0%-82.5% 24 64% (6.34%) 57.5%-80% 

6 71% (4.36%) 65%-77.5% 25 69% (5.5%) 62.5%-82.5% 

7 59.75% (7.02%) 50%-70% 26 72.50% (6.22%) 62.5%-80.0% 

8 66.25% (8.46%) 52.5%-77.5% 27 76.75% (5.92%) 67.5%-85% 

9 71% (7.09%) 57.5%-80% 28 67.25% (8.25%) 50.0%-80.0% 

10 63.25% (7.99%) 55%-75% 29 67.75% (5.41%) 60%-75% 

11 66.75% (4.88%) 57.5%-75% 30 75.5% (5.45%) 67.5%-85% 

12 64.25% (5.37%) 57.5%-72.5% 31 60.25% (6.17%) 55%-72.5% 

13 74.5% (5.45%) 65%-85% 32 69% (4.5%) 62.5%-77.5% 

14 72.25% (8.25%) 57.5%-85% 33 79.5% (6.3%) 67.5%-87.5% 

15 64.5% (5.89%) 57.5%-75% 34 63% (6%) 57.5%-72.5% 

16 59.0% (8.46%) 45.0%-75.0% 35 66.75% (8.44%) 55%-80% 

17 66.0% (5.15%) 60.0%-75.0% 36 62% (7.73%) 52.5%-72.5% 

18 63.75% (6.54%) 55.0%-77.5% 37 62.5% (9.08%) 47.5%-77.5% 

19 63.5% (9.63%) 45.0%-80.0% 38 67.75% (5.96%) 60%-80% 

Mean: 67.74% Max: 79.5% Min: 59% 

 

 

 

 

 



Appendix II: Table XI. Ten-Fold Cross-Validation Prediction Results for subject 33 with 

Artificial Data  

( 23 Epochs, Batch Size = 400, Augmenting Size = 600, Max improvement in bold) 

 

#Segment  Mean (std) #Segment Mean (std) 

1 79.50% (6.30%) 9 78.25% (7.08%) 

2 79.50% (7.40%) 14 77.75% (6.75%) 

3 81.25% (5.15%) 18 78.25% (7.59%) 

6 77.75% (5.86%) 21 79.25% (6.03%) 

7 78.25% (6.43%) 42 77.75% (5.96%) 

  



Appendix III: Table XII. Ten-Fold Cross-Validation Prediction Results over 38 subjects 

with Artificial Data  

( 23 Epochs, Batch Size = 400, Segment number =3, Augmenting Size = 600, Subjects with 

improvement in bold) 

 

Subject  Mean (std) Subject Mean (std) 

1 69.5%(5.1%) 20 72.25%(5.75%) 

2 72.75%(4.8%) 21 67.75%(3.61%) 

3 61.75%(4.34%) 22 66.5%(3.74%) 

4 73%(6.2%) 23 69%(6.73%) 

5 76.25%(5.62%) 24 62.75%(6.66%) 

6 73.25%(4.48%) 25 72%(4.85%) 

7 58.5%(6.73%) 26 74.75%(6.27%) 

8 66%(7.92%) 27 76%(5.39%) 

9 72%(4.44%) 28 67.5%(10.84%) 

10 66%(6.14%) 29 68%(7.4%) 

11 68%(6.5%) 30 77.5%(6.52%) 

12 61%(4.9%) 31 60%(5%) 

13 75.5%(3.67%) 32 70%(6.61%) 

14 72.25%(6.37%) 33 81.25%(5.15%) 

15 64.75%(4.93%) 34 63.75%(5.84%) 

16 60%(10.37%) 35 68.25%(5.92%) 

17 66.5%(5.39%) 36 64.75%(5.53%) 

18 65.25%(4.53%) 37 65%(7.83%) 

19 66.25%(8.08%) 38 67.5%(6.12%) 

Mean: 68.5% Min-Max: 58.5%-81.25% 

 

 

 

 



Appendix IV: Table XIII. Ten-Fold Cross-Validation Prediction Results over 38 subjects 

with Artificial Data  

( 10 Epochs, Batch Size = 400, Segment number =3, Augmenting Size= 1800, Subjects with 

improvement in bold) 

 

Subject  Mean (std) Subject Mean (std) 

1 67.25% (2.84%) 20 71.75% (6.71%) 

2 73.75%(4.64%) 21 66.75% (5.48%) 

3 63.25%(5.60%) 22 69.25% (6.62%) 

4 75.50% (5.34%) 23 68.50% (8.67%) 

5 78.50% (6.91%) 24 62.25% (7.54%) 

6 73.25% (6.62%) 25 70.50% (6.60%) 

7 61.50% (8.23%) 26 74.25% (5.25%) 

8 68.75% (9.10%) 27 77.00% (4.30%) 

9 71.00% (5.15%) 28 69.50% (7.73%) 

10 67.00% (6.10%) 29 68.25% (7.16%) 

11 68.50% (4.50%) 30 77.50% (5.00%) 

12 65.25% (5.96%) 31 61.00% (5.27%) 

13 73.75% (3.91%) 32 66.00% (4.21%) 

14 72.75% (6.27%) 33 80.00% (5.70%) 

15 63.75% (4.91%) 34 65.75% (7.08%) 

16 61.50% (9.03%) 35 67.75% (6.93%) 

17 66.75% (3.17%) 36 62.75% (5.64%) 

18 67.75% (5.18%) 37 62.00% (6.96%) 

19 67.50% (8.29%) 38 68.25% (6.90%) 

Mean: 68.85% Min-Max: 61% - 80% 
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