Statistical Overview and Visualization of Election Data

Mentor: Dr. Kwai Wong

Student: Ng Ching Tao (CityU), Jorge Garcia (NMSU), Frank Betancourt (UTK)

Objectives of the project

- Using Pearson Product Moment Correlation to quantify how certain a factor affects electoral results
- Experiment with feasibility of predicting electoral results with deep neural networks
- Visualize election data

Background of information

	Hong Kong (HK)	United States (U.S.)
Source of data	 Public Opinion Program, the University of Hong Kong (HKUPOP) (Year: 2008, 2012, 2016) 	 ANES Time Series Study (ANES) (Year: 1992-2016) American Community Survey (US Census Bureau) (Year: 2015)
Political Battle	Pro- government vs Pro- choice	Republican vs Democrats
Election	Hong Kong Legislative Council Election	House of Representatives

Hong Kong Legislative Council Election

*Traditional functional constituency is not included

Dominant factors across election period

	Hong Kong Island	Kowloon West	Kowloon East	New Territories West	New Territories East	District Council (Second)
2008	Political inclination	Political inclination	Political inclination	Political inclination	Political inclination	/
2012	Emphasis on relationship with central government raised by candidate	Follow strategic plan raised by candidate	Emphasis on relationship with central government raised by candidate	Voting decision	Education level	Political Inclination
2016	Voting decision	Voting decision	Education level	Voting decision	Voting decision	Voting decision

Dominant factors on election day

	Hong Kong Island	Kowloon West	Kowloon East	New Territories West	New Territories East	District Council (Second)
2008	Join July first demonstration	Occupation	Preference of candidates	Duration of being voter	Education level	1
2012	Channels of knowing candidates	Preference of candidates	Voting decision	Reasons of voting	Voting decision	Age

U.S. Data Correlation

- 1. Which party does respondent vote, and under straight ticket or split ticket
- 2. Ticket splitting presidential vs congressional vote
- 3. Vote in National Elections
- 4. Vote on Election day or before
- 5. Intended Presidential Vote vs Actual Presidential Vote
- 6. Vote for a candidate for congress
- 7. Straight ticket vs split ticket
- 8. Respondent registers and votes
- 9. Congressional votes for House of Representatives
- 10. Vote for winner in House of Representatives

Visualization-Hong Kong Map

Visualization of Hong Kong election data

2008

2016

Demosisto

Pro- choice Independent

Hong Kong

Federation of

Trade Union

ofession

Common

and

others

Other localists

long Ka Individua

Teachers

Union

ahbourh

and Worker's

ervice Centr

Number of eligible voters

Percentage of seats gained by pro- government and pro- choice

Voting rate

2003 Demonstration: Against political incompetence & maladministration of Tung Chee Hwa 2004 Demonstration: Striving For Universal Suffrage in 2007 & 2008 for the chief executive and Legislature respectively

45

1997.5 2000.0

2002.5 20

Year 2008-2012

July 2012: Moral and National Education Controversy

Year 2012-2016

October 2013:

Free-to-air TV license controversy

28 September 2014 -15 December 2014:

Occupy Central

Year 2012-2016

Protect One country, Two system Emancipate five booksellers immediately

October 2015 - June 2016:

Causeway Bay bookseller disappearance

July 2016:

Resignations of ICAC heads controversy

Interactive Map Visualization

Figure: Chloropleth map showing correlations for 2008, 2012, and 2016

-A choropleth map was created using the Python library Folium, Leaflet.js, and geojson to specify the shape of regions -Colors change depending on what factor, year pair are being displayed, greener being more positive correlation, and redder more negative

-Interactive visualization can be viewed at: http://web.eecs.utk.edu/~fbetanco/visualization/chloropleth.html

Election Data Deep Learning

Regions

Hong Kong:

- Hong Kong Island
- Kowloon West
- Kowloon East
- New Territories West
- New Territories East

Training: HKUPOP Survey (2008, 2012)

Prediction: HKUPOP Survey (2016)

Parameters: 8

United States:

- California
- Texas
- Alabama
- Minnesota
- Florida

Training: ANES Time Series (1992 - 2014)

Prediction: US Census Bureau ACS (2015)

Parameters: 9

Surveys have different questions and answer keys:

- 1. Identify shared parameters
- 2. Modify values to have same answer key

ACS
Marital status 1 .Married 2 .Widowed 3 .Divorced 4 .Separated 5 .Never married or under 15 years old

Surveys have different questions and answer keys:

- 1. Identify shared parameters
- 2. Modify values to have same answer key

VCF0147	ANES	ACS
DEMOGRAPHICS: Respondent - Marital Status		
QUESTION: Are you married? VALID CODES: 		MAR Marital status 1 .Married 5 % .Widowed 3 .Divorced 4 .Separated 2 % .Never married or under 15 years old

Tricky parameters:

- Same information, but hidden
- Want to keep as many parameters as possible

VCF0114	FS PINCP		7			AC	S
DEMOGRAPHICS: Respondent Family - Income Group	LJ	Total	person's	income	(signed)	AC	5
QUESTION: About what do you think your total income will be this year for yours and your immediate family?	self		bbbbbbb 0000000 -019999		.N/A .None .Loss of	5 \$19999 or 1	more
VALID CODES:							
1. 0 to 16 percentile 2. 17 to 33 percentile 3. 34 to 67 percentile 4. 68 to 95 percentile 5. 96 to 100 percentile			-000001. 0000001 0000002.	019998 .9999999	.Loss \$1 .\$1 or b .\$2 to \$	to \$19998 Dreak even 39999999	

Solution:

- 1. Identify percentile brackets
- 2. Interpolate to find needed percentiles
 - Lagrange Interp: Approx is good

Measures of income dispersion				
MEASURE Household Income at				
Selected Percentiles 10th percentile limit	. 13,259			
40th percentile limit	. 43,511			
50th (median)	. 56,516			
80th percentile limit	. 117,002			
95th percentile limit	. 214,462			

US Census Bureau

Solution:

- 1. Identify percentile brackets
- 2. Interpolate to find needed percentiles
 - Lagrange Interp: Approx is good

Measures of income dispersion				
MEASURE Household Income at Selected Percentiles 10th percentile limit 20th percentile limit 40th percentile limit 50th (median) 60th percentile limit 80th percentile limit	13,259 22,800 43,511 56,516 72,001 117,002			
90th percentile limit	162,180 214,462			

US Census Bureau

Solution:

- 1. Identify percentile brackets
- 2. Interpolate to find needed percentiles
 - Lagrange Interp: Approx is good

VA	LID	COI	DES	;
1.	0 1	to	16 1	- percentile
2.	17	to	33	percentile
3.	34	to	67	percentile
4.	68	to	95	percentile
5.	96	to	100) percentile

- 1. 0 to \$20,787
- 2. \$20,787 to \$35,345
- 3. \$35,345 to \$86,701
- 4. \$86,701 to \$214,462
- 5. + \$214,462

Preprocessing: One Hot Encoding

Survey answers is nominal data:

- Numbers have no real value Represent an idea
- Model only needs to know True/False (Mutually exclusive)

DEMOGRAPHICS: Respondent - Marital Status QUESTION: ------Are you married? VALID CODES: ------1. Married 2. Never married 3. Divorced 4. Separated 5. Widowed

Preprocessing: One Hot Encoding

Survey answers is nominal data:

- Numbers have no real value Represent an idea
- Model only needs to know True/False (Mutually exclusive)

Preprocessing: One Hot Encoding

Survey answers is nominal data:

- Numbers have no real value Represent an idea
- Model only needs to know True/False (Mutually exclusive)

Prediction: Tools

- Keras for Python 3.x
 - Easy to implement (Math is taken care of)
 - Have to determine optimal architecture and hyperparameters
- Quickly develop a prototype to experiment with the idea

Deep Neural Network:

Prediction: Classification

Two possible approaches (Bipartisan elections):

- Only consider voters
 - Binary classification

- Consider both voters & nonvoters
 - Multiclass classification

 $f(z_j)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$

Softmax

Prediction: Hyperparameters

Comparison between 4 possible ML algorithms:

- Predictions most stable with binary classification
- Best accuracy at ~10 nodes with a DNN

Set fixed seed for reproducibility

Prediction: Hyperparameters

Prediction loss per epoch:

Diminishing returns at ~15 epochs for both predictions

Prediction: Parameters

Hong Kong:

- Political Inclination
- Gender
- Education
- Previous Voter
- Age Group
- Occupation
- Planning to vote
- Area of Residence

United States:

- Age Group
- Gender
- Race
- Census Region
- Income Group
- Occupation
- Employment Status
- Education
- Marital Status

Prediction: Uncertainty

- Model's weights are randomly initialized
 - Leads to different results every time
 - How good is the model then?

Use a prediction as a "measurement":

- Sample of N = 100 predictions
- Find distribution that best describes the sample
- Calculate appropriate moments

Prediction: Uncertainty

Best fit is with a normal distribution ---> Can quantify the performance of the DNN

Prediction: Counting Votes

- Each individual has a corresponding statistical weight == Number of votes
 - How many people does this individual represent
- Sum of weights ---> Total number of votes

Voter Turnout:

- US Census Bureau provides voter turnout dependent on various factors
 - Most impactful is racial turnout. Use this as a modifier of the statistical weights.

$$w_i := w_i \cdot turnout_{race}$$

Prediction: Hong Kong Results

	2016 Legislative Council Election						
	Pro-Governi	ment	Pro-Choice				
District	Prediction	Actual	Prediction	Actual			
Hong Kong Island	$56.51 \pm 3.13\%$	48.97%	$43.49 \pm 3.13\%$	51.03%			
Kowloon W	$30.11 \pm 4.65\%$	36.91%	$69.89 \pm 4.65\%$	63.09%			
Kowloon E	$52.91 \pm 2.89\%$	49.14%	$47.09 \pm 2.89\%$	50.86%			
New Territories W	$44.56 \pm 3.51\%$	44.27%	$55.44 \pm 3.51\%$	55.73%			
New Territories E	$37.99 \pm 4.33\%$	40.19%	$62.01 \pm 4.33\%$	59.81%			

- More parameters could increase precision and accuracy
- Model cannot take into account sudden political shifts and anomalies

Prediction: United States Results

	2016 House of Representatives Election						
	Democra	nt	Republican				
State	Prediction	Actual	Prediction	Actual			
CA	$72.68 \pm 6.72\%$	62.31%	$27.32 \pm 6.72\%$	36.89%			
$\mathbf{T}\mathbf{X}$	$31.43 \pm 4.29\%$	37.1%	$68.57 \pm 4.29\%$	57.2%			
AL	$39.81 \pm 3.45\%$	32.91%	$60.19 \pm 3.45\%$	64.67%			
MN	$54.01 \pm 8.11\%$	50.23%	$45.99 \pm 8.11\%$	46.73%			
FL	$29.53 \pm 4.01\%$	45.21%	$70.47 \pm 4.01\%$	54.71%			

- Model can determine dominant party in each state
 - Greatly exaggerates the vote sway at times
- Improve with: Parameters, Turnout percentage