
FFT Algorithm

• CUDA language was preferred for the implementation
• The cuBLAS API was used for matrix computations
• The cublasGemmEx() function with datatype FP16 and

compute type FP32 was used for multiplication
• Unified Managed Memory is used

We successfully completed the Fourier Transform of a N (16)
length input sequence using radix-4 FFT.

• Batch Data Set FFTs
• Efficient Memory allocation to minimize data transmission

between host (CPU) and device (GPU)
• Develop function for in place transpose
• Reduce number of transposes required
• Expand for 2 Dimensional FFTs
• Optimize the FFTs for material science applications

This project was sponsored by the National Science Foundation through Research
Experience for Undergraduates (REU) award, with additional support from the Joint Institute
of Computational Sciences at University of Tennessee Knoxville. This project used allocations
from the Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by the National Science Foundation. In addition, the computing work was also
performed on technical workstations donated by the BP High Performance Computing Team.

This material is based upon work supported by the U.S. DOE, Office of Science, BES, ASCR,
SciDAC program.

Accelerating FFT with half-precision floating point

hardware on GPU

Future Work

Anumeena Sorna (NITT) & Xiaohe Cheng (HKUST)

Mentor: Eduardo D’Azevedo (ORNL) & Kwai Wong (UTK)

Acknowledgements

Utilizing the computational power of GPU

With Nvidia tensor core hardware (introduced on the Volta
GPUS), half precision (FP16) matrix multiplications can be
done at 12x the speed of normal matrix computations.

Half precision means that a number is stored with half the
amount of bits than single precision. In an image application,
this would mean your image is more “unclear.”

The problem is that the FFT is usually used in applications
that require high precision.

Our research aims to develop and test an algorithm that uses
the fast tensor core hardware, without compromising on
precision.

To preserve the accuracy, we split FP32 number to the scaled
sum of two FP16s by utilizing linear property of the FFTs

Single to Half Precision FFT 4 Algorithm

Our Algorithm

GPU Kernels

We present a fast and accurate parallel algorithm for
computing the Fast Fourier Transform on the Volta Graphical
Processing Unit. We focus on utilizing the speedup due to
using half precision multiplications capability of the tensor
core hardware without degrading on the precision of the
Fourier Transform result. This is done by splitting the input
single precision data set into 2 half precision set and
recombining at a later step. This Fast Fourier Transform
algorithm is widely used in material science applications and
we hope to further optimize the algorithm for the domain
specific computational needs.

Discrete Fourier Transform (DFT)

The DFT converts time domain signals to frequency domain
signals according to the equation:

Applications of Fourier transform:

• Speech Processing (MP3)
• Image Processing (JPEG)
• Filtering Algorithms
• Solving Difference Equations
• Fast polynomial Multiplication
• Material Science Domain

The Fast Fourier Transform (FFT)
The DFT would require many computations for a large input
sequence of length N. In order to simplify computation the
FFT algorithm was developed. The FFT reduces the number of
computations needed for N points from O(2N 2) [DFT] to
O(2N*log2(N)) [FFT].

FFT Algorithm

x

Abstract

Background

Objective

Step 1: Factor N=n1*n2

Step 2: Take FFT of length n2 (n1 times)

Step 3: Multiply by e- i*2𝜋(k,l)/N

Step 4: Take FFT of length n1 (n2 times)

Step 5: Reorder

2 4 length-2 DFTS

4

2 length-4 DFTS

5

Final Result

3 e- i*2𝜋(k,l)/N

Element wise
Multiplication

(N = 8)

n1 = 2 n2= 4

1
Input Data

x_fp32(:) = s1_fp32 * x1_fp16(:) + s2_fp32 * x2_fp16(:)

X_fp32(:) = s1_fp32 * X1_fp16(:) + s2_fp32 * X2_fp16(:)

Result

NATIONAL INSTITUTE Of
TECHNOLOGY

TIRUCHIRAPALLI - INDIA

Input Sequence Norm Maximum Error

1.0 (Range: [-1,1]) 2.3839121e-07

1000 (Range: [-1000,1000]) 6.1035200e-05

