
Accelerating Fast Fourier
Transform with half-precision
floating point hardware on GPU

Anumeena Sorna & Xiaohe Cheng
Mentor: Eduardo D’Azevedo & Kwai Wong

Our project concerns a new
implementation of the classical discrete
Fourier Transform and the fast Fourier
Transform algorithm.

BACKGROUND
INFORMATION

Discrete Fourier Transform
Converts time domain signals to frequency domain signals according to the equation:

Applications in:

● Convolution
● Filtrering
● Image Processing

Source: MRI Questions http://mriquestions.com/fourier-transform-ft.html

Inverse DFT:

Discrete Fourier Transform
DFT can also be represented in matrix form:

Linear Transformation!

The Fast Fourier Transform
Divide and Conquer Principle

FFT Computation requires: ~N*log(N) whereas
DFT: N^2

Source: DSPlib http://en.dsplib.org/content/fft_introduction/fft_introduction.html

4 Step Algorithm

Data represented as B by A matrix
1. Perform B number of A-point FFT (in parallel,
stride B)
2. Perform scaling by twiddle factors exp(-
(2π/N)*j*k*I)
3. Perform A number of B-point FFT (in parallel,
stride 1)
4. Transpose data to form A by B matrix

Example Problem - DFT
x=[1,2,3,4,5,6,7,8]

Matrix Multiplying x and W,

X = [36, 4 + 9.7i, -4 + 4i, -4 + 1.7i, -4, -4 – 4i, -4 – 9.7i]

Example Problem - FFT

X =

1 5
2 6
3 7
4 8

1) X =

1 5
2 6
3 7
4 8

4, 2pt FFTs Y1 =

6 −4
8 −4
10 −4
12 −4

2) Twiddle Factor 3)

W =
𝑊,∗, 𝑊,∗.

𝑊.∗, 𝑊.∗.

𝑊/∗, 𝑊/∗.

𝑊0∗, 𝑊0∗.

Y2 =

6 −4
8 −2.8 + 2.8𝑖
10 4𝑖
12 2.8 + 2.8𝑖

2, 4pt FFT Y1 =

36 −4 + 9.7𝑖
−4 + 4𝑖 −4 + 1.7𝑖
−4 −4 − 1.7𝑖

−4 − 4𝑖 −4 − 9.7𝑖

❖ To utilize the tensor core hardware
by NVIDIA

❖ To implement computational
tricks

❖ To consider domain-specific
requirements

RESEARCH
GOALS

Volta Architecture

Figure 1. Tensor core 4*4*4 matrix multiply and accumulate. Source:
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

Tensor cores give a 8x increase in throughput using
half precision input. This has been utilized by
cuBLAS and cuDNN library to accelerate matrix
multiplication and artificial intelligence training.

Source: https://www.nvidia.com/en-us/data-center/tensorcore/

Challenge
The representation range of FP16 is roughly 6*10^(-5) to 6*10^5, which is much more
limited than single precision. This degrades the precision of operations and may cause
frequent overflows.

Figure 1. Half precision floating point (FP16) number representation. Source:
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

Single to Half Precision
To keep the accuracy, we split a FP32 number to the scaled sum of two FP16 number, and
make use of the property that Fourier Transform is a linear operation:

x_fp32(:)	=	s1_fp32	*	x1_fp16(:)	+	s2_fp32	*	x2_fp16(:)

X_fp32(:)	=	s1_fp32	*	X1_fp16(:)	+	s2_fp32	*	X2_fp16(:)

and

where scaling factor s1 and s2 are determined by the maximum absolute value in the
original vector.

GPU Implementation
We first wrote Matlab code to test the algorithm, and will proceed to implement it with C
and CUDA. We call cuBLAS library for matrix-matrix multiplication.

Further acceleration
3M algorithm, 2D fft & in-place transformation, partial FFTs

Partial	FFTs

In	some	applications	we	only	require	a	
portion	of	the	matrix	with	FFT	results

An	algorithm	can	be	used	to	efficiently	
compute	only	required	portions	instead	of	
usual	method	of	computing	all	and	
discarding	unnecessary	FFT	values

3M	Algorithm

Current Progress & Future Work

FFT
Algorithm

MATLAB to
C conversion

C to CUDA
conversion

GPU
optimization

FFT LibraryPartial FFT
Algorithm

Q & A
Any questions?

