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ABSTRACT 
 
We present a fast and accurate parallel algorithm for computing the Fast Fourier 
Transform on the Volta Graphical Processing Unit. This paper focuses on utilizing the 
speedup due to using the half precision multiplication capability of latest graphical 
processing units’ tensor core hardware without significantly degrading on the precision of 
the Fourier Transform result. In this paper, an algorithm is developed that dynamically 
splits the input single precision data set into two half precision sets at the lowest level for 
half precision multiplication and recombines the result at a later step. The Fast Fourier 
Transform algorithm is widely used in many applications and we hope to further optimize 
the algorithm for the domain specific computational needs. 
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RESEARCH GOAL 
 
In this research experience, we developed and implemented a method that allows faster 
computation of the FFT by exploiting tensor core hardware on V100 GPUs but, at the same, 
time preserve as much accuracy as possible using a mixed precision method. We tested this 
algorithm using MATLAB for verification of results and proceeded to implementation on 
the GPUs using CUDA and cuBLAS API.  
 
I. INTRODUCTION  
 

The Fast Fourier Transform (FFT) is a widely used numerical algorithm that plays a 
vital role in many scientific and engineering applications. In large computational 
applications, including image processing, speech recognition, and large scale simulations, a 
majority of execution time is alloted to computing the FFT. In order to improve 
performance of the FFT, many investigations have been made on implementing the FFT on 
the computationally superior Graphical Processing Unit (GPU) platform.  
 

Recently, half precision floating point arithmetic (FP16) is gaining popularity with 
its faster speed and energy saving ability. With the introduction of the tensor cores on the 
Nvdia Volta GPU Hardware, a large speed up, up to 12x, in half precision matrix 
multiplications has been introduced.The FFT can benefit greatly from the advantages 
offered by tensor cores, as it is a matrix multiplication intensive algorithm.  

 
Unfortunately, this half precision hardware cannot be exploited in scientific FFT 

applications where single precision is required. In order to satisfy the accuracy 



requirement while utilizing the advanced half precision hardware, a mixed precision 
method utilizing dynamic splitting is developed. This method efficiently uses the 
computational capability of tensor cores without a significant drop in precision.  

 
II. DFT and FFT ALGORITHM  

 
The Discrete Fourier Transform (DFT) converts a finite discrete signal in the time 

domain to a one in the frequency domain according the the following equation:  

 
The inverse is given by:  
 

 
 
Where x(n) is the discrete signal in the time domain and X[k] is the discrete signal in 

frequency domain and N is the entire length of the sequence. The DFT can clearly be 
rewritten as a matrix multiplication with the number computations required of the order 
O(N^2). 

 
The DFT can also clearly be represented in the matrix form: 

  
 
The high number of matrix multiplications of the DFT enable it to be a highly 

parallel algorithm that can benefit from the advanced matrix multiplication capability of 
GPUs. It is also important to note that the DFT is clearly a linear operation.  

 



The class of algorithms that efficiently calculate the DFT with a lower number of 
computations is known as FFT. Gentleman and Sande developed the first FFT algorithm 
that rewrote the length N sequence as N = n1 × n2 in order compute of the DFT with a 
lower number of computations. By dividing a problem of size N to two (or x) problems of 
size N/2 (or N/x), it attains time complexity O(NlogN). 

 
The FFT is a divide and conquer algorithm that uses the symmetry of the DFT 

equation to reduce the number of computations 
 

 
There have been many FFT algorithm proposed. We follow the simple and elegant orginal 
FFT algorithm proposed by Gentlemen and Sande in their paper “Fun for Profit.” The 
algorithm can be succinctly stated as follows:  

 
1) Represent the length N sequence as an n1 × n2 matrix. 
2) Transpose the matrix, resulting with an n2 × n1 matrix.  
3) Take n1 individual n2-point-FFTs down the columns of the matrix.  
4) Perform element wise multiplication with the resultant matrix and the twiddle 
factor matrix.  
5) Transpose the matrix, resulting with an n1 × n2 matrix.  
6) Take n2 individual n1-point-FFTs down the columns of the matrix.  
7) Transpose the resultant matrix 

 
This method requires two multicolumn FFTs as well as 3 matrix transposition operations.  



 
 
This can be represented as: 

 
Where xn1×n2 is the vector x reshaped as a matrix of n1×n2 and FN is the Fourier matrix 
defined by FN [k, l] = e −2jπkl/N and W is twiddle matrix given by WN [k, l] = e −2jπkl/N. 
 
A. Adapting the algorithm  
 

1) Choosing the radix:  
The real and imaginary Fourier matrices are defined as: 

 
By choosing a radix of 4, or only allowing N = 4, we can observe that the elements of 
the real and imaginary Fourier matrix is either 1, 0, or −1. This is exactly 
representable in FP16 without loss of precision. 

 
 
2)  Elimination of a few Transposes:  
Large matrix transpositions are bulky operations limited by communication and 
memory bandwidth. To reduce the number of transpositions required, we may 
employ common matrix properties to simplify the FFT equation. 



 
This can be further simplified by observing that the real and imaginary Fourier 
matrices of a length 4 sequence are symmetrical. Therefore, FT4 = F4.  

 
This simplification reduces the number of transpositions required from 3 to 1. But 
this introduces a complexity in the code; the FFTs computed in step 3 and 6 cannot 
be calculated in an identical fashion. The order of matrix multiplication is 
interchanged in the two steps.  
 

B. Adapted FFT Algorithm  
 
Keeping the previous adaptations in mind, the implemented FFT algorithm is as follows:  
 
1) Represent the length N sequence as an 4 × N/4 matrix.  
2) Transpose the matrix, resulting with an N/4 × 4 matrix.  
3) Take FFTs down the columns of the matrix recursively until the size of the FFT 
transform does not exceed 4.  
4) Perform element wise multiplication with the resultant matrix and the twiddle factor 
matrix.  
5) Take length-4 FFTs down the columns of the matrix. 
 
III. DYNAMIC SPLITTING  
 

In order to exploit the throughput of the tensor cores, a mixed precision approach is 
developed. This method ensures that only the matrix multiplication operations are done on 
the half precision input data set but the rest of the FFT algorithm operates on the single 
precision data set. 

 
At the lowest level of the FFT algorithm, the single precision data sequence is 

converted into two half precision data sets. Every FP32 number is expressed as a scaled 
sum of two FP16 numbers. As the FFT is a linear algorithm, Length-4 FFTs are applied 
separately to the half precision data sets and recombined.This splitting operation will be 
called twice, right before the FFT matrix multiplication in step 3 of the adapted FFT 
algorithm and before the FFT matrix multiplication in step 5 of this algorithm. 



 
In order to retain as much accuracy as possible, a dynamic splitting algorithm is 

employed. Scaling vectors, s1 and s2 are utilized to minimize the error caused by the FP32 
to FP16 conversion. These scaling factors are determined for each column of the input 
matrix and are single precision numbers. 

 
A. Dynamic Splitting Algorithm:  
 

Step 1: Find the absolute norm of each column of the input matrix to decide s1 and 
divide the respective column by the scaling factor 

 
 
Step 2: Convert the input FP32 matrix xf p32 into FP16 matrix x1f p16  

 
 
Step 3: Calculate the residual error caused by conversion and store as x2fp32 

 
 
Step 4: Find the absolute norm of each column of the residual matrix to decide s2 
and divide the respective column by the scaling factor. 

 
Step 5: Convert the residual FP32 matrix x2f p32 into FP16 matrix x2f p16 



 
 
IV. IMPLEMENTATION  
 
Our experimental platform is a heterogeneous processor consisting of a CPU and a GPU. 
Our CPU card is and the GPU is NVIDIA Tesla V100 GPU. For reference another platform 
consisting of CPU and NVIDIA Pascal GPU was used. 
 

 

 

 
Tensor cores give a 8x increase in throughput using half precision input. This has been 
utilized by cuBLAS API to accelerate matrix multiplication. 
 
The following cuBLAS API kernels were used: 

- cuBLAS <t> gemmEx 
- cublasGemmStridedBatchedEx() 

 
For further details on code, refer to bitbucket.  



V. EXPERIMENTAL RESULTS 
 

We evaluate our implementation by testing its performance on one 
NVIDIA®Tesla®V100 GPU. It has 640 tensor cores and 5120 CUDA cores, with 16 GB GPU 
memory and 900G GB/sec memory bandwidth.  

 
We use CUDA events and the nvprof profiler to measure the execution time and 

analyze the splitting overhead. We also calculate its deviation from the FP32 cuFFT results 
and compare the accuracy with FP16 cuFFT. 

 

 
 
The error statistics indicate that our implementation preserves high accuracy, even 

with growing input sizes 
 

 
 
The dynamic splitting method preserves high accuracy over a wide range of inputs. 

 



 
 
Compared with matrix multiplication, the time spent on splitting and combine is not 
significant. 
 
VI. CONCLUSION  
 

We have designed and implemented a FP32-FP16 mixed-precision  FFT that takes 
advantage of the recent tensor core hardware. The dynamic splitting method effectively 
emulates single-precision calculation and produces highly accurate results from a variety of 
inputs. The speed of current cuBLAS-based implementation is inferior to cuFFT APIs, but 
we expect it to gain advantage with larger input size as the tensor core can be fully utilized 
and the setup cost can be amortized. 
 

The speed of our implementation is inferior to cuFFT library. It can be optimized by 
implementing customized kernels. We also expect it to gain advantage with large input 
sizes, as tensor cores can be fully utilized and setup cost can be amortized. 

 
Current implementation can handle a large variety of inputs. The relative error 

exceeds 0.1% or the program throws error when: Input data range ≥ 3 * 1010; or • Input 
data range ≤ 5 * 10-11 (Close to dynamic range of single precision number). The range may 
be further enlarged by pre-scaling all input numbers 
 
VII. FUTURE WORK 

 
 There are several interesting directions for further optimizations: 

1. Many operations can be tuned specifically for the problem size involved in 
the FFT calculation.  The time spent on 16-bit GEMM grows quickly when 



input size exceeds 16384. This may due to the inefficient cuBLAS 
implementation. This may be improved by implementing transpose and 
GEMM kernels.  

2. Another direction is to design an auto-tuning splitting algorithm that 
supports ill-conditioned inputs, and further optimizes the splitting overhead.  

3. Also, our implementation of matrix transpose kernel has yet to take 
advantage of the shared memory. It can be accelerated by applying the “tiled” 
design.  

4. A more sophisticated splitting algorithm may be designed.  This could be 
done using bit manipulations.  

5. The cuLASS library can be used, which shows higher performance than 
cuBLAS 
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