

A Cellular Automata Model For Dynamics and Control of Cardiac Arrhythmias

DANNY GALLENBERGER (CARROLL UNIVERSITY) XIAOPENG ZHAO (UTK) KWAI WONG (UTK)

Introduction

- Sudden cardiac arrest is responsible for 325,000 deaths in the US each year
- Arrhythmias
 - Not being identified in time
 - Their onset is difficult to predict
- Illustration of wave propagation through cellular automata models
 - Two-variable PDEs are computationally expensive and properties are difficult to adjust
- Control mechanisms
 - Feedback control only effective for smaller tissue
 - Constant DI?

Introduction

- In this study, we will look at:
 - The electrophysiological properties of the heart
 - Cardiac arrhythmias
 - How a cellular automata model can be used to analyze various scenarios
 - The functions used to simulate heart activity
 - Constant DI control through the use of electrocardiogram (ECG) data

Electrophysiology of the Heart

- Four chambers
- Electrical signal propagates through chambers
 - Originates in the sinus node
- As signal passes through each chamber, the heart contracts

Electrophysiology of the Heart

Four states

- S0 = Resting
- S1 & S2 = Excited
- S3 = Absolute Refractory
- S4 = Relative Refractory

Cardiac Arrhythmias

- A disruption in the heart's normal rhythm
- Variable Heart Rate
 - Bradycardia
 - Tachycardia
- Reentrant Arrhythmias tissue is excited repetitively by free waves
 - Atrial Fibrillation
 - Ventricular Fibrillation
- Non-reentrant Arrhythmias
 - Alternans
 - AV Heart Block

Cellular Automata

- Two-dimensional grid of cells
- Each cell has multiple possible states
- Predefined rules based on neighbor states
- Effective for modeling complex systems consisting of simple units
- Faster than solving PDEs

Methods

Steps taken:

- Analyze Mathematica simulations that run many heart scenarios
- Recreate simulation in MATLAB
- Generate action potential graphs and cellular automata models
- Generate action potential duration and ECG data
- Implement constant DI control on scenarios

Methods

- Two-dimensional cellular automata model
- Each square represents a heart cell
- Excitation threshold = 0.9 V
- Refractory threshold = 0.1 V
- Action potential (V) of a heart cell:
 - (0.9, 1] = excited phase
 - (0.1, 0.9] = absolute refractory phase
 - (0, 0.1] = relative refractory phase
 - 0 = resting phase
- Action potential duration (APD) = time spent in excited and absolute refractory phases
- Diastolic interval (DI) = time spend in relative refractory and resting phases

MATLAB Functions & Scripts

- Simulation
 - Stimulation
 - Propagation
 - Depolarization
 - Evolution
- Parameters
- Restitution
- Action Potential

- Action Potential Plots
- Cellular Automata
- ECG Plots
- Φ_e (Transmembrane Potential)

Scenarios

Normal Conduction

- 50x50 model
- Basic cycle length (BCL) = 75ms
- Time = 2000ms
- **Normal Conduction with Scar**
- 50x50 model
- Basic cycle length (BCL) = 75ms
- Time = 2000ms
- Scar cells at $x \in [10, 15]$ and $y \in [15, 20]$
 - Excluding (10,15), (10,20), (15,15), and (15,20)

Spiral Wave with Scar

- 50x50 model
- Basic cycle length (BCL) = 75ms
- Time = 2000ms
- Scar cells at $x \in [10,15]$ and $y \in [5,10]$
 - Excluding (10,5), (10,10), (15,5), and (15,10)

<u>Alternans</u>

- 25x25 model
- Basic cycle length (BCL) = 54ms
- Time = 2000ms

Other Variables

- Stimulation Times
 - Array of t-values at which the pacemaker cells stimulate
- Voltage(x,y,t)
 - Action potential of a heart cell at a given time
- **APD**(x,y)
 - Action potential duration of a heart cell
- DI(x,y)
 - Diastolic interval of a heart cell
- Duration(x,y)
 - Time elapsed since the cell's last excitation

Restitution

- Defines the relationship between the DI and the APD
- $APD_n = f(D_{n-1})$
- $f(D_n) = A_{max} A_0 e^{-D_n/\tau}$
- $f(D_n) = 60 50e^{-D_n/20}$
- As $D_n \rightarrow \infty$, $f(D_n) \rightarrow A_{max}$
- Cardiac dynamics unstable for $f'(D_n) > |\mathbf{1}|$

Action Potential

 Signifies what happens to a cell after it has been stimulated as time progresses

•
$$f(A,t) = \frac{e^{-t/T(A)}}{c + e^{-t/T(A)}}$$

•
$$T(A) = \frac{A}{\ln(0.9) - \ln(0.1 * c)}$$

- As $t \rightarrow \infty$, $f(A, t) \rightarrow 0$
- The greater A is, the slower the cell depolarizes

•
$$f(t) = \frac{e^{-t/9.7025}}{0.01 + e^{-t/9.7025}}$$

▪ *T*(66) ≈ **9.7025**

Stimulation & Wave Propagation

- Stimulation
 - If voltage ≤ 0.1, the cell depolarizes (voltage becomes 1 V)
- Wave Propagation
 - If voltage ≤ 0.1, the cell's neighbors are checked
 - If at least 3 neighbors are excited, the evaluated cell becomes excited
 - Otherwise, the cell evolves
- Depolarization
 - DI of previous heartbeat is calculated
 - APD of next beat is determined
 - Voltage becomes 1 V
 - Duration resets
- Evolution
 - Duration increments
 - Voltage changes based on APD and duration

Black cell is being evaluated Gray cells are the neighbors being checked

Simulation

- 3x3 group of pacemaker cells stimulate at t = 0
- At every time step, the propagation function is called at each cell
- If scar cells exist, they are set to 0 V
- When t reaches a stimulation time, the pacemaker cells become excited
- Process repeats until the entire interval is covered

- Used as a control mechanism
- Heartbeats are regulated by DI rather than BCL
- Stimulation times are not necessarily equally spaced throughout

Electrocardiogram (ECG)

- Diagram used to illustrate electrical activity in the heart
- Measures voltage difference between two points <u>outside</u> the tissue
- ECG = $\Phi_e(B) \Phi_e(A)$
- $\Phi_e(x', y') = \int (-\nabla V_m) \cdot \left(\nabla \frac{1}{r}\right) dx dy$

•
$$r = [(x - x')^2 + (y - y')^2]^{1/2}$$

Results

Normal Conduction

Normal Conduction with Scar

X

> 25

Results

 Spiral Wave with Scar

Alternans

Alternans

Normal Conduction

No Control vs Constant DI Control

- No Control
 - tstart = t
 - tend = tstart + BCL

- Constant DI
 - tstart = t
 - tend = tstart + APD(1,1) + DI_target

- DI_target = BCL APD(1,1)
- APD(1,1) = 56.5466ms
- Normal Conduction with Scar & Spiral Wave with Scar
 - BCL = 75ms
 - DI_target ≈ 19
- Alternans
 - BCL = 54ms
 - DI_target ≈ -2

No Control vs Constant DI Control

Conclusion

- Constant DI effectively controlled alternans in smaller tissue
- Benefits of cellular automata
- Future work
 - 3D simulation
 - GPU implementation
 - Controlling other heart scenarios
 - Constant RT control
 - Other control mechanisms?

References

- Electrocardiogram ECG. myDr.
- Feldman, A.B., Chernyak, Y.B., & Cohen, R.J. (1999). Cellular automata model of cardiac excitation waves. Herzschrittmachertherapie und Elektrophysiologie, 10, 92-104.
- Flavio H Fenton et al. (2008). Cardiac arrhythmia. Scholarpedia, 3(7):1665.
- Garcia, G. & Sheth, N. (n.d.). Understanding Cardiac Arrhythmias through Cellular Automata. University of Tennessee, Knoxville.
- Zlochiver, S., Johnson, C., and Tolkacheva, E. G. (2017). Constant DI pacing suppresses cardiac alternans formation in numerical cable models. American Institute of Physics. Chaos 27, 093903.