omputational

Creating a GUI to define workflows
in openDIEL and adding support for GPU
Deployment

Efosa Asemota, Frank Betancourt,
and Quindell Marshall
Mentor: Dr. Kwai Wong .

What?

- openDIEL is a wrapper to schedule work on a set of resources.
- Primarily intended as a workflow engine to launch batch jobs on HPC
- Consists of a set of C code, and MPI functions to make it work

- The idea is a create a single MPI executable, and specify how processes will run
in a configuration file

- Communication takes place between modules, which are split into separate
sub-communicators under the MPI_COMM_WORLD created by the main driver

Tuple Space

Tuple Space communication
\via IEL _tput() and IEL _tget()

//— \
MPI_COMM_WORLD
/

Direct Communication
between modules via
IEL_get() and IEL_put()

Figure 1: Graph of module communication

Configuration Files

modules=(i

{ 1

function="MODULE-0"; # <- Serial code,
args=("../i-serial/helloiexe") : : } :
libtype="static";

splitdir="HELLOI";

size=5

1,
{

function="alone";
args=();
libtype="static";
exec_mode="parallel”

copies=2;
processes_per_copy=3
size=6 workflow:
threads_per_process=1 {
splitdir="ALONE-MOD" set1:
} {
: groupi:
: . : ; ; {
Figure 2: Example Configuration File ardei=(sinne")
iterations=1

}

}
set2:
{

groupl:

{
order=("MODULE-0")
iterations=1

}

}

}

Addition of GPU Keywords

No way to specify options for jobs that use GPU

Create keywords that allow the usage of GPU
Be able to prescribe how modules will utilize GPUs

modules=(

{

-
-

function="gpu-code";
args=():
libtype="static";
exec_mode="parallel"”;
num_gpu=4

size=2
gpu_per_process=2

function="more-gpu-code”
args=()

libtype="static"
exec_mode="parfllel”

)

num_gpu=2
gpu_per_process=2
size=1

Figure 3: How GPU
keywords might look

Why do we need a Graphical User Interface (GUI)?

The purpose of the GUI is to provide a more user-friendly way of using
OpenDIEL.

In order to currently run programs using OpenDIEL, the user would have to go
through a lot of steps.

One of the first steps that they would have to do is to convert their programs
into functions using ModMaker.py

The next step would be for them to create a header file using their newly
formatted code and to also create and compile it as a library.

The next step would be for them to go into workflow configuration file and
make and add all of the necessary changes that they would need in order run
the code.

Why do we need a Graphical User Interface (GUI)?
(contd.)

e The next step would be for them to go into the DriverMM.c code, and include
the all of their codes as header files.

e They would then also go down to the IELADDModule function call, and pass
as arguments (&nameOfCode, “name of code”)

e They would also need to go through several Makefiles and make necessary
corrections in order to run the code.

e With the GUI, we are hoping to negate the need of the user to go through all
of these tasks, and to instead have the GUI handle all of the responsibility for
them.

[~ |
*

* ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ »

Original Code

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

/

#include <stdio.h>
#include <stdlib.h>

int main(void) {

FILE * fp;

fp = fopen ("file.txt", "w+");
printf("i\n");
fflush(stdout);

fprintf(fp, "%s %s %s ", "HELLO-", "FROM-", "I-");

fclose(fp);

Figure 4: This is a simple
example of a Hello World
program before it has been
converted by ModMaker.py

|
*

¥ % % % ¥ ¥ ¥ ¥ ¥ ¥

#1
#1
#1

Converted code from ModMaker.py

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

/

nclude "helloi.h"
nclude <stdio.h>
nclude <stdlib.h>

int helloi(IEL_exec_info_t *exec_info) {

FILE * fp3

fp = fopen ("file.txt", "w+");

printf("i\n");

fflush(stdout);

fprintf(fp, "%s %s %s ", "HELLO-", "FROM-", "I-");
fclose(fp);

return IEL_SUCCESS;

Figure 5: This is the result of the
Hello World program after it has
been converted by
ModMaker.py

Header File

[~
*

* ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ »

/

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

#include "IEL _exec_info.h"

#ifndef _MAINMOD helloi_H
#define _MAINMOD_ helloi_H

int helloi(IEL_exec_info_t *exec_info);

#endif

~

Figure 6: Example of a
Header File

NNSNNNNSNSNSS

HEHRBEHRBREHFRE SNSSNSSSNNE

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Simple driver's configuration file. Presents the most

Sample managed driver's configuration file. Presents basic 1ideas
of using the openDIEL to integrate both serial and parallel code
in the same simulation.

For a more comprehensive, non-annotated automatic driver example,
please see the USECASE directory. For explanations of settings not
detailed here, including details on using an automatic module to run
serial code, please see the annotated workflow.cfg and workflowMM.cfg
files.

tuple_space_size=0
modules=(

)

function="MODULE-0©0";

args=(" /--/i-serial/helloiexe");
libtype="static";
splitdir="HELLOI"
size=5

3,
function="helloi”;
args=():

libtype="static”;
library="1ibmodhelloi.a";
splitdir="HELLOI"

size=5

3,

function="hellome”;
args=():

libtype="static”;
splitdir="HELLOME"
library="1ibmodhellome.a";
size=5

3,

function="hellomy”
args=()

libtype="static"”
library="1ibmodhellomy.a"
splitdir="HELLOMYSELF"
size=1

3

Figure 7: Configuration File

workflow:
{
groups:
{
groupil:
{

Note that both serial and parallel code can be run in the
same group

order=("MODULE-0","hellome", "helloi")
iterations=2

}

group2:

{
order=("hellomy")
iterations=2

}}
N

Figure 8: Another part of the Configuration File

Copyright (c) 2015 University of Tennessee

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

/

#include <stdlib.h>
#include <stdio.h>
#include "IEL.h"

#include "libconfig.h"
#include "IEL_exec_info.h"
#include "modexec.h"
#include "helloi.h"
#include "hellome.h"
#include "hellomy.h"
//#include "modrscript.h"
#include "tuple_server.h"

[~
O O

#define MOD_STRING_LENGTH 20
void ConfigFile(void);

int main(int argc, char* argv[])

{
int rc, rank, num_modules, i, size;
char mod_name[MOD_STRING_LENGTH];
config_t cfg;
config_setting_t *setting;

// Initialize basic MPI settings
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

/] = Timer --------ceremececcnan
timestamp ("Begin", "driver.c", 1);
R Timer ----c-creoccoocmeonn-

// Add all non-serial modules manually via IELAddModule
IELAddModule(&helloi, "helloi");

IELAddModule(&hellome, "hellome");
IELAddModule(&hellomyself, "hellomy");

// IELAddModule(&modrscript,"modrscript");
IELAddModule(ielTupleServer, "ielTupleServer");

Figure 9: Driver Code

HHH R RSB HRHHHRR S H R R H

#

Makefile for HELLOWORLD

#

i2:2:0: 3020002008020 0: 8128000803002 20 2121210121 300: 2021802022120 0: 2020213028120 2120200120 208: 20218121202

all:
cd
cd
cd
cd
cd
cd
cd
cd
cd
cd

cleanall:
cd
cd
cd
cd
cd
cd

i-serial;make ; cp *exe

.. /DRIVER

i; make; cp *.a ../MODULE-FILE
me; make; cp *.a ../MODULE-FILE
myself; make; cp *.a ../MODULE-FILE

MODULE-FILE; make
DRIVER; make

USECASE/WORKFLOW-AM; cp ..
USECASE/WORKFLOW-AM; cp ..
USECASE/WORKFLOW-MM; cp ..
USECASE/WORKFLOW-MM; cp ..

i-serial; make clean
i; make clean

me; make clean

myself; make clean
MODULE-FILE; make clean
DRIVER; make clean

Sy Sy My

. /DRIVER/*exe .
./DRIVER/driverAM .
. /DRIVER/*exe .
. /DRIVER/driverMM .

Figure 10: Makefile

IEL_HOME=../../..
include $(IEL_HOME)/Makefile.1inc

CFLAGS = -HWall
CLIBS = -lm -1z -1dl
INCLUDES=$(MACH_INC)
static: libmodhelloi.a
libmodhelloi.a: helloi.c
$(MPICC) -c $(INCLUDES) helloi.c
ar -rcs libmodhelloi.a helloi.o
clean:

rm -f *.0 *.alj

Figure 11: Makefile

flpath to top level of openDIEL
IEL_HOME=../../..

#Include the global Makefile.inc
include $(IEL_HOME)/Makefile.inc

CFLAGS = -Wall

OMP = -fopenmp

CLIBS-SM = -L../MODULE-FILE -lmodhelloi -1lmodhellome -1lmodhellomy

CLIBS-MM = -L../MODULE-FILE -lmodhelloi -1lmodhellome -1lmodhellomy -1lmodexec 7 i q 7
CLIBS-AM = -L../MODULE-FILE -lmodexec Figure 12: Driver Makefile
##CLIBS-R = ../MODULE-FILE/libmodrscript.a -dynamic $(R_LIB)

CLIBS-R =

CLIBS = -lm -1z -1dl

INCLUDES=$(MACH_INC) -I../MODULE-FILE
INCLUDE-R=$(R_INC)

LDFLAGS=$(MACH_LIB) $(LIBCONFIG_LIB) $(CLIBS)
all: driverAM driverSM driverMM

driverSM:
S$(MPICC) S(CFLAGS) S(INCLUDES) -c driver.c
$(MPICC) $(OMP) -o driverSM driver.o $(LDFLAGS) -fopenmp $(CLIBS-SM)

driverMM:
S$(MPICC) $(CFLAGS) S(INCLUDES) S(INCLUDE-R) -c driverMM.c
$(MPICC) $(OMP) -o driverMM driverMM.o $(LDFLAGS) $(CLIBS-MM) $(CLIBS-R)

driverAM:

$(MPICC) $(CFLAGS) $(INCLUDES) -c driverAM.c

$(MPICC) $(OMP) -o driverAM driverAM.o $(LDFLAGS) $(CLIBS-AM)
clean:

rm -rf *.0 driverSM driverAM driverMM *exe Timers HELLO*

The Graphical User Interface

e Major Areas of GUI:
o Module Functions and Attributes
o Workflow and Drivers
o Launch & Output

Module Functions and Attributes

Module Functions: Serial Code Storage
e Holds name and pathway of function
Module Attributes: Module description

e General Information for Module, including current working directory
e Allows user to search for programs, function libraries, and other files

openDIEL Configuration File Wizard

Module Name List Attributes New Workflow Make Driver Launch DIEL DIEL Result Save as...

Update Function

Function Name: python2

Executable: Browse... perl

java
python3
Rscript
exel
exe2
exe3

python2.7

New Function

Figure 13: “Module Name” Tab

openDIEL Configuration File Wizard

Module Name

Automatic
Managed

Double-Click To Add-->
python

perl

List Attributes New Workflow

Execution Path:

Module Name:

Library Type:

Input Arguments:

Boundary Points:

Module Size:

No. of Copies:
Additional Library:
Split Directory:

Make Driver

Launch DIEL

Browse...

DIEL Result ‘ Save as...

New Module

Figure 14: “List Attributes” Tab

Workflow and Driver

Workflow: Layout of modules, ordering, processor requirement, etc.

e Creates arrangement of groups for running, including number of copies to be
run, as well as number of iterations for each ordering.

Driver: Automatic and Manual Drivers

e Automatic: Used when all files are source code, code is run in specified order
without changes with locked module names
e Manual: Used to handle parallel code files.

openDIEL Configuration File Wizard

Module Name List Attributes New Workflow Make Driver

Size: 3

Iterations: Ill
Order: Module-1 MODULE-6 MC

Set 3

Launch DIEL

DIEL Result Save as...
New Set
New Group

Update Group

Figure 15: “New Workflow” Tab

Launch And Output

Launch(Future): Launches the workflow engine with the selected options and
given data.

e User can decide number of processors, method, etc.

Output(Future): Presents the result of the workflow engine in its own tab.

Well, that’s it!

Q&A

