
Creating a GUI to define workflows 
in openDIEL and adding support for GPU 

Deployment

Efosa Asemota, Frank Betancourt, 
and Quindell Marshall

                      Mentor: Dr. Kwai Wong



What? 
- openDIEL is a wrapper to schedule work on a set of resources. 

- Primarily intended as a workflow engine to launch batch jobs on HPC

- Consists of a set of C code, and MPI functions to make it work 

- The idea is a create a single MPI executable, and specify how processes will run 
in a configuration file

- Communication takes place between modules, which are split into separate 
sub-communicators under the MPI_COMM_WORLD created by the main driver



Figure 1: Graph of module communication



Configuration Files

Figure 2: Example Configuration File



Addition of GPU Keywords
No way to specify options for jobs that use GPU

- Create keywords that allow the usage of GPU
- Be able to prescribe how modules will utilize GPUs

Figure 3: How GPU 
keywords might look



Why do we need a Graphical User Interface (GUI)?
● The purpose of the GUI is to provide a more user-friendly way of using 

OpenDIEL.
● In order to currently run programs using OpenDIEL, the user would have to go 

through a lot of steps.
● One of the first steps that they would have to do is to convert their programs 

into functions using ModMaker.py
● The next step would be for them to create a header file using their newly 

formatted code and to also create and compile it as a library.
● The next step would be for them to go into workflow configuration file and 

make and add all of the necessary changes that they would need in order run 
the code. 



Why do we need a Graphical User Interface (GUI)? 
(contd.)
● The next step would be for them to go into the DriverMM.c code, and include 

the all of their codes as header files.
● They would then also go down to the IELADDModule function call, and pass 

as arguments (&nameOfCode, “name of code”)
● They would also need to go through several Makefiles and make necessary 

corrections in order to run the code. 
● With the GUI, we are hoping to negate the need of the user to go through all 

of these tasks, and to instead have the GUI handle all of the responsibility for 
them. 



Original Code 
Figure 4: This is a simple 
example of a Hello World 
program before it has been 
converted by ModMaker.py



Converted code from ModMaker.py
Figure 5: This is the result of the 
Hello World program after it has 
been converted by 
ModMaker.py



Figure 6: Example of a 
Header File

Header File 



Figure 7: Configuration File



Figure 8: Another part of the Configuration File



Figure 9: Driver Code 



Figure 10: Makefile



Figure 11: Makefile



Figure 12: Driver Makefile



The Graphical User Interface

● Major Areas of GUI:
○ Module Functions and Attributes
○ Workflow and Drivers
○ Launch & Output



Module Functions and Attributes
Module Functions: Serial Code Storage

● Holds name and pathway of function

Module Attributes: Module description

● General Information for Module, including current working directory
● Allows user to search for programs, function libraries, and other files



Figure 13: “Module Name” Tab



Figure 14: “List Attributes” Tab



Workflow and Driver
Workflow: Layout of modules, ordering, processor requirement, etc.

● Creates arrangement of groups for running, including number of copies to be 
run, as well as number of iterations for each ordering.

Driver: Automatic and Manual Drivers

● Automatic: Used when all files are source code, code is run in specified order 
without changes with locked module names

● Manual: Used to handle parallel code files.



Figure 15: “New Workflow” Tab



Launch And Output
Launch(Future): Launches the workflow engine with the selected options and 
given data.

● User can decide number of processors, method, etc.

Output(Future): Presents the result of the workflow engine in its own tab.



Well, that’s it!

Q&A


