
Interfaces for openDIEL

Efosa Asemota, Frank Betancourt, Quindell Marshall
Mentor: Dr. Kwai Wong

August 3, 2018

Contents

1 Introduction 2
1.1 Workflow Configuration Files . 2
1.2 Intermodular Communication . 3
1.3 Driver . 3
1.4 Managed and Automatic Modules . 3

2 Interface 4
2.1 Module Keywords . 4
2.2 Workflow Organization . 5
2.3 Application: LAMMPS . 7
2.4 Application: GREP in parallel . 9

3 Necessity for a GUI 12

4 How GUI Solves Issues 19
4.1 Module Tabs . 19
4.2 Workflow Tab . 23
4.3 Driver Tab . 24
4.4 Launch and Output Tabs . 26

5 Future Work 27

1

1 Introduction

Open Interoperable Distributive Executive Library (openDIEL) is a workflow engine
designed for usage in high performance computing environments. It consists of a
set of C code, combined with openMPI functions to unify many different modules of
computation under a single executable that can then be run in an MPI environment.

The user specifies a list of modules, and defines a workflow in a Configuration File.
The user then creates a driver that reads in the configuration file, calls MPI Init(),
and calls IEL member functions to start modules and run the specified workflow. The
driver can then simply be run with mpirun.

1.1 Workflow Configuration Files

At the center of openDIEL is the Workflow Configuration File. The file is divided
into two different sections: module specification, and workflow specification.

The first section of the configuration file is module specification. This is where you
are able to specify exactly what they want to run, with details such as the number of
MPI processes, the number of openMP threads to create, and the number of GPUs
the module will be allocated.

The second section of the configuration file is workflow specification; you specify
exactly how modules should run, such as the order in which modules should run, and
what kind of dependencies exist between them, and how many iterations.

2

1.2 Intermodular Communication

Figure 1: Graph showing inter-modular communication

Modules can communicate via either direct synchronous communication via IEL get()
and IEL put(), or via asynchronous tuple space communication via IEL tput() and
IEL tget() functions.

1.3 Driver

When running a workflow under openDIEL, all that is needed is a single driver ex-
ecutable. In order to create the driver executable, parallel modules code must be
converted into a function, compiled as a library, and linked to the driver. Serial code
can simply be started with fork() and exec(). The driver calls MPI Init(), starts all
of the user specified modules, and splits each of the modules into their own subcom-
municator.

1.4 Managed and Automatic Modules

For module specification, there are two type of modules: Managed Modules, and
Automatic Modules. Automatic modules consist of serial code; they do not call
MPI Init() or utilize any kind of parallelization. Automatic modules can simply be
run with fork() and exec().

3

However, modules that utilize openMPI functions must be compiled as libraries
and linked with the driver, and called as functions. Since driver should make the
only call to MPI init(), and the driver will create MPI COMM WORLD, managed
modules must remove any calls to MPI init() and MPI Finalize(), as well as references
to MPI COMM WORLD, and replace them with the proper subcommunicators of the
MPI COMM WORLD created by the driver.

2 Interface

As previously discussed, openDIEL allows for the specification of modules and work-
flows via Workflow Configuration files. This is what the driver reads in order to figure
out how to allocate resources, run modules, and work out dependencies.

2.1 Module Keywords

On a basic level, the way that resource usage is specified for each module of compu-
tation is through the usage of keywords:

2.1.1 function

This keyword is a string that specifies the name of the module. This string is used
to refer to the module in the workflow section.

2.1.2 args

In the case of automatic modules, this keyword specifies the command that will be
executed. For managed modules, this is a list of command line arguments that will
be passed to the module when it is run.

2.1.3 copies

The copies keyword specifies how many copies of a module need to be run. This can
be used in conjunction with a splitdir keyword that specifies the name of directories
that input will come from, so that many copies of the same module can be working
on different data.

2.1.4 processes per copy

Used in conjunction with copies, specifies how many MPI processes each copy will
need. For example, you could specify that you want two copies of a LAMMPS simu-
lation to run, with each of the copies to have 6 processes per copy.

4

2.1.5 threads per process

This keyword specifies how many openMP threads will be created when openMP par-
allel sections are encountered. This works by calling omp set num threads(threads per process)
before running each module that specifies this setting.

2.1.6 size

This keyword specifies the total number of MPI processes a module will require. When
processes per copy and copies are specified, this value defaults to processes per copy
* copies.

2.1.7 stdin

Names a file from which input will be redirected from. This is useful to allow you to
run many different copies of the same module on different input data.

2.1.8 num gpu

This specifies the number of GPUs that a module will require. If 2 GPUs are available,
and 2 modules request 1 GPU, each module will be allocated separate GPUs. This
works by setting the CUDA VISIBLE DEVICES environment variable.

2.1.9 cores

How many cores the module will require in total. This is calculated by size *
threads per process

2.1.10 splitdir

This keyword specifies the name of the directories in which input and output will go
for each module or copy of the module. If splitdir is set to “module-splitdir”, for
each copy of the module, it will receive it's input from files named by the previously
specified keyword stdin, in directories named “module-splitdir-0,...,module-splitdir-
[N-1]”, where N is the number of copies of the module.

2.2 Workflow Organization

2.2.1 groups

Groups contain an ordered list of modules that they are to run.
order : This keyword is specified for groups, and is assigned a list of modules
that are to be run
depends : This keyword is specified in groups, and is assigned a list of groups

5

that must be finished running before the group can begin.
iterations : This simply specifies the number of iterations the group will run

2.2.2 sets

Sets contains groups. All sets begin running in parallel. Dependencies can only be
specified between groups that are members of the same set.

6

2.3 Application: LAMMPS

LAMMPS is popular simulation software for classical molecular dynamics that utilizes
openMPI, openMP, and CUDA for parallelization. As such it is well suited to be run
as a module under openDIEL. After compiling as a static library, LAMMPS can then
be linked with a driver and called as a function.

2.3.1 Modules

The following LAMMPS modules were specified:

{

function="lammps_mod"

stdin="in.lj"

splitdir="lj-melt"

copies=2

processes_per_copy=6

size=12

}

Figure 2: Module 1 as it appears in a workflow file

Module 1 runs two copies of LAMMPS on different input parameters, utilizing
6 MPI processes each. This kind of module was specified with keywords copies=2,
processes per copy=6, splitdir=lj-melt, stdin=in.lj.

{

function="lammps_mod_gpu"

args=("","-sf","gpu")

stdin="in.friction"

splitdir="friction"

copies=1

processes_per_copy=1

size=1

num_gpu=1

}

Figure 3: Module 2 as it appears in a workflow file

Module 2 runs with 1 MPI process and 1 GPU on a single file for input. This
module was specified with they keywords size=1, splitdir=friction, stdin=in.friction,
num gpu=1.

7

2.3.2 Workflow

The workflow was specified with one set containing three groups:
tuple group: specified with order=(“ielTupleServer”) and iterations=1. A tuple
server is needed any time there are multiple groups that need to be started, or de-
pendencies need to be managed
Group 1: specified with order=(“lammps mod”) and iterations=1
Group 2: specified with order=(“lammps mod gpu”) and iterations=1
Set 1: contains group1 and group2
Since all of the modules are in their own groups, and no dependencies are specified,
all modules will begin at the same time

The resulting workflow at it appears in the workflow configuration file is as follows:

set1:

{

tuple_group:

{

order=("ielTupleServer")

iterations=1

}

group1:

{

order=("lammps_mod")

iterations=1

}

group2:

{

order=("lammps_mod_gpu")

iterations=1

}

}

Figure 4: Module 2 as it appears in a workflow file

Under openDIEL, the process of running many different parallel LAMMPS simu-
lations with varying input parameters is made easy, and allows for a lot of flexibility
as to what resources will be used for each simulation, while at the same time being
able to submit everything as one job.

8

2.4 Application: GREP in parallel

Another useful application of openDIEL is to search large amounts of data in parallel.
Existing serial code can easily be parallelized with openDIEL by splitting up the data
to be processed into multiple smaller pieces, running many copies of the same code
on the smaller data, and then combining the output of the copies.

Figure 5: Diagram of entire workflow

2.4.1 The dataset

The dataset is 30 .csv files, totaling at about 180 million rows and 31 GB. Each row
has 15 columns, and the goal is to search for and save all of the rows whose “UDID”
column value matches the UDID value being searched for.

9

2.4.2 Modules

There are 3 modules that were specified:

2.4.3 Module: MODULE-1

The first module is simply a shell script that is given a path to a directory containing
the 30 files that need to be processed. It takes all of the files, and creates 30 directories
and copies each file in it's own directory. It then places a file containing a list of UDIDs
that need to be searched for in each .csv file called “udids.txt”. The resulting module
is as follows:

{

function="MODULE-1"

args=("sh", "prepare_directories.sh", "data/April2016")

libtype="static"

size=1

},

Figure 6: MODULE-1 as it appears in the configuration file

2.4.4 Module: MODULE-2

The second module is another shell script that uses GREP to search for each UDID
in “udids.txt”, and redirect all of those lines to a file. The result is one file for each
udid in “udids.txt”, containing all of the lines that match in the .csv being search.
This script is run with 30 copies so that all 30 .csv files can be searched for in parallel.
The resulting module is as follows:

{

function="MODULE-2"

args=("sh","../search_udids.sh")

libtype="static"

size=30

splitdir="GREPCONVERSION"

},

Figure 7: MODULE-2 as it appears in the configuration file

2.4.5 Module: MODULE-3

The third and final module looks through all 30 directories for each udid's search
results file, and concatenates the results into a file that contains all of the lines for

10

the udid that were found in all 30 .csv files. The resulting module is as follows:

{

function="MODULE-3"

args=("sh","location_concatenate.sh")

libtype="static"

size=1

}

Figure 8: MODULE-3 as it appears in the configuration file

2.4.6 Workflow

The workflow only requires that the modules be run in order: MODULE-1 creates the
directories containing the .csv files needing searching, MODULE-2 then searches the
files and outputs a file in each directory with search results for each UDID, MODULE-
3 then concatenates all of the search results for each UDID in all 30 directories into
a single file containing all of the search results. The resulting workflow is specified as
follows:

workflow:

{

groups:

{

tuple_group:

{

order=("ielTupleServer")

iterations=1

}

group1:

{

order=("MODULE1","MODULE-2", "MODULE-3")

iterations=1

}

}

}

Figure 9: The complete workflow file

11

2.4.7 Results

With the original Python script, executing a search through all 30 files took roughly
40 minutes for a single UDID. Using GREP and parallelizing with openDIEL, the
time was able to be reduced to an average of about 2 seconds per UDID to search
through all 30 files.

Search Method Time (minutes:seconds)
Python Script 40:00
SQLite Query 01:26
GREP 04:13
GREP with openDIEL 00:02

Figure 10: Comparison of time to search for 1 UDID in all files

3 Necessity for a GUI

Currently, the process of executing openDIEL in both managed and automatic modes
has proven to be a very tedious and time consuming task, and if one were to try to
execute this process without the assistance of a Graphical User Interface, they would
need to follow each of the following steps.

First, the user would need to take their code(s) and run it through the python file
ModMaker.py. The purpose of doing this step is because in order for a user to run
their programs in parallel, they would need to first convert their code(s) into modules
(also known as functions) in order for it to execute. Currently, ModMaker.py can
only convert C code, C++, and Fortran code, but with future development, it will
look to convert codes from different programming languages as well. The following
figure details just what openDIEL is doing with a user's program.

Figure 11: ModMaker.py’s functionality

12

The following figures illustrate just how ModMaker.py modifies a simple Hello
World program.

int main(void)

{

FILE *fp;

fp = fopen("file.txt", "w+");

printf("i\n");

fflush(stdout);

fprintf(fp, "%s %s %s ", "HELLO-", "FROM-", "I-");

fclose(fp);

return 0;

}

Figure 12: Original Code

#include "helloi.h"

int helloi(IEL_exec_info_t *exec_info)

{

FILE *fp;

fp = fopen("file.txt", "w+");

printf("i\n");

fflush(stdout);

fprintf(fp, "%s %s %s ", "HELLO-", "FROM-", "I-");

fclose(fp);

return IEL_SUCCESS;

}

Figure 13: Code converted to module form with ModMaker.py

As seen from both figures, the original code was successfully modified by Mod-
Maker.py. The code was remade into a function called “helloi”, and it was given the
structure “IEL exec info t *exec info” as a parameter. It also returns “IEL SUCCESS”

13

as a return statement. The user would need to repeat this step for as many modules
as they would want to create.

The next step would be for the user to compile each module as a library. To do
this, the user would need to enter in two commands for each module as shown in the
following figure.

Figure 14: Commands for creating a library

The next step would be for the user to create a header file for their newly formatted
modules. This is a very simple step, as all the user would need to do is follow this
layout shown in the following figure. As stated previously, the user would also need
to repeat this step for as many modules as they would want to create.

#include "IEL_exec_info.h"

#ifndef _MAINMOD_helloi_H

#define _MAINMOD_helloi_H

int helloi(IEL_exec_info_t *exec_info);

#endif

Figure 15: Header File

The next step is the most important step, as the user would need to create the
workflow configuration file. The workflow configuration file is divided into two sec-
tions: the module section and the workflow section. The purpose of the module
section is to define the existence of each module, and the user would do this by sim-
ply entering in the name of the module, giving the module some input arguments,
giving a library type (either static or dynamic), including the name of the library that
they compiled, giving the name of the split directory that will hold all of the output
from that module, and finally assigning a number of processors to that module. The
following figure shows just what the user would need to do in the module section.

14

modules=(

{

function="MODULE-0";

args=("../../i-serial/helloiexe");

libtype="static";

splitdir="HELLOI";

size=5

},

{

function="helloi";

args=();

libtype="static";

library="libmodhelloi.a";

splitdir="HELLOI"

size=5

},

{

function="hellome";

args=();

libtype="static";

splitdir="HELLOME"

library="libmodhellome.a";

size=5

},

{

function="hellomy"

args=()

libtype="static"

library="libmodhellomy.a"

splitdir="HELLOMYSELF"

size=1

}

)

Figure 16: Module section of the Workflow Configuration File in Managed Mode

The next section is the workflow section, and the purpose of the workflow section
of the configuration file is to define how each module will run once openDIEL has
been executed. The user would do this by defining the order in which each module
will run, the dependencies if needed, and also how many iterations that will occur.
Once they've completed this step, the user would have created a group. The user can
create as many groups as they'd want, but once they've created enough groups, they

15

would need to save those groups into a set. The user can also create as many sets
as they'd like as well. The following figure shows that concept, and just what the
user would need to do in this section. As seen from the figure below, the user defined
two groups into a set, and listed an order and a number of iterations to go into each
group.

workflow:

{

groups:

{

group1:

{

Note that both serial and parallel code can be run in the

same group

order=("MODULE-0","hellome", "helloi")

iterations=2

}

group2:

{

order=("hellomy")

iterations=2

}

}

}

Figure 17: The Workflow section of the Workflow Configuration File

If the user is in managed mode, the next step would be for the them to edit the
Driver.c code and include all of the header files that they created to correspond to
each module that they created.

16

#include <stdlib.h>

#include <stdio.h>

#include "IEL.h"

#include "libconfig.h"

#include "IEL_exec_info.h"

#include "modexec.h"

#include "helloi.h"

#include "hellome.h"

#include "hellomy.h"

#include "tuple_server.h"

Figure 18: Module header files included in the Driver.c

Next, the user would go down into the code to IELAddModule function call and
pass as arguments a function pointer to their module and the name of their module
as a string argument.

// Add all non-serial modules manually via IELAddModule

IELAddModule(&helloi,"helloi");

IELAddModule(&hellome,"hellome");

IELAddModule(&hellomyself,"hellomy");

IELAddModule(ielTupleServer, "ielTupleServer");

Figure 19: IELAddModule function calls for each module

17

#include <stdlib.h>

#include <stdio.h>

#include "IEL.h"

#include "libconfig.h"

#include "IEL_exec_info.h"

#include "modexec.h"

#include "helloi.h"

#include "hellome.h"

#include "hellomy.h"

#include "tuple_server.h"

#define MOD_STRING_LENGTH 20

void ConfigFile(void);

int main(int argc, char* argv[])

{

int rc, rank, num_modules, i, size;

char mod_name[MOD_STRING_LENGTH];

config_t cfg;

config_setting_t *setting;

// Initialize basic MPI settings

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

// ----------------- Timer ---------------------

timestamp ("Begin", "driver.c", 1);

// ----------------- Timer ---------------------

// Add all non-serial modules manually via IELAddModule

IELAddModule(&helloi,"helloi");

IELAddModule(&hellome,"hellome");

IELAddModule(&hellomyself,"hellomy");

IELAddModule(ielTupleServer, "ielTupleServer");

...

Figure 20: Driver.c

Next, the user would need to link all of the compiled libraries for each module to
the Driver and compile the Driver. Lastly, they would run the driver executable with

18

the Workflow Configuration file.
With a user-friendly Graphical User Interface in place, the issue of having the

user being tasked with repeating each various step with little or no mistakes would
be mitigated, as the goal of the GUI will be to simply handle most of this responsibility
from the user, and to also speed up the process of preparing and running modules
through openDIEL.

4 How GUI Solves Issues

The graphical user interface handles each of the current tasks that must be done
manually in tabs, from a greeting tab with general instructions and constructing the
workflow configuration file - modules and workflow sections are seperate - to creating
and compiling a new driver, to running the driver and workflow, and printing out the
results.

Upon the GUI being run, the first tab to open will be the “Introduction” tab,
which houses basic information about the program for the user. Inside this tab there
is simply generic information about the program, such as the creators, their respective
establishments, as well as the National Science Foundation, and brief directions about
each other tab for first-time users.

4.1 Module Tabs

The first and second actual tabs of the GUI are “Module Keywords” and “Module
Attributes”, taking care of the modules half of the configuration file. “Module Key-
words” is short, and it is meant as a preemptive storage for the input arguments
of a module. Here, any commands or files to be searched for a module (or multiple
modules) can be given or a ‘keyword’ to be identifiable later in the application. These
‘keywords’ can be saved and updated as needed.

Figure 21: Module Keywords

Inside the “Module Attributes” tab is where the large chunk of information for
modules is input. Before any information is stored, however, a mode for each module
must be selected, between ‘Automatic’, meant for running only serial code, such
as an executable or a file through an interpreter, or ‘Managed’, meant for running
parallel code, which will require a few more steps in the driver creation. The mode is
determined by which type of module is created, but although the decision is reversable,
it will modify certain option entries for a switch to ‘Automatic’: the names, library

19

types, source code links and execution mode of all existing modules will be changed
and then entry for these fields will be disabled unless the mode is reverted.

Figure 22: Module Attributes

After mode selection comes the bulk of the input (in order):

• File Search Path (Used for File Search Options in GUI as Initial Directory),

• Tuple Server Size (Tuple Communication),

• Module Name (Managed only),

• Module Library Type (Static or Dynamic),

• Module Input Arguments (May Take Input From ‘Module Functions’),

• Module Boundary Points (Direct Communication),

• Number of Total Processors to Allocate for Module (Module Size),

• Module Execution Mode (Parallel or Serial),

• Number of Copies of Module,

• Processes Per Copy of Module,

• Threads Per Process of Module,

• Number of GPU to Allocate for Module,

• Path to Source Code File for Module (Managed only), and

20

• Name for Split Directories of Module.

Tuple Server Size: Number of processors to be allocated to the Tuple Server(s),
which are run similarly to other modules, except this(these) will always come before
created modules in the ‘modules’ half of the configuration file. Despite appearing for
every module, this setting is not module dependant, and if set to 0, there will be
no tuple server, and the ‘dependencies’ option in the ‘Create Workflow’ tab will be
disabled. This value is listed at the top of the configuration file, as ‘tuple space size’.

Module Name: This field is what will be stored as the ‘function’ parameter in
the workflow configuration file, and must contain no spaces or special characters. For
‘Automatic’ mode, this will be preset to the name ‘MODULE-N ’ where N is the
current module number. For ‘Managed’ mode, if this module has a source code file
that is modified in the ‘Modify Driver’ tab, this will become the name of the function
of the new code, as well as the header file created from this new code.

Module Library Type: A choice between ‘static’ or ‘dynamic’, stored as the ‘lib-
type’ parameter in the workflow configuration file.

Module Input Arguments: The input inside this entry box will be stored as the
‘args’ parameter of the module in the configuration file, broken up as a tuple of
strings. Information inside this field must be entered just as the terminal command
for it would be, including any tags, file references, or interpreter calls. Using the
buttons placed on the left side from the ‘Module Keywords’ tab, the user can copy
their stored data into this field with easy repeatability.

Module Boundary Points: This field takes in the boundary points for mod-
ules to have direct communication, and places them in the ‘shared bc read’ and
‘shared bc write’ parameters of the configuration file (Not Yet Supported) (if ap-
plicable).

Module Size: The number of processors the module needs to run, stored in the
‘size’ parameter in the workflow configuration file. This value is derived by the driver
from multiplying the number of copies of the module by the number of processors
per copy of the module (if applicable) when left blank. If the sufficient amount of
processors are not available to be allocated , or are not given by the system, the
workflow will not execute it at all.

Module Execution Mode: The execution mode for the module, stored in the
‘exec mode’ parameter of the configuration file. This is a choice between ‘serial’
or ‘parallel’, and has bearing on the protocol for all the options related to module
copies, excluding total module size. If this field is not ‘parallel’, it is not displayed in

21

the configuration file, and is inferred by the driver to be ‘serial’.

Module Copies: The amount of copies of the module that are made at runtime.
This is stored in the ‘copies’ parameter of the configuration file, and is used to derive
the ‘size’ parameter by the driver if the size is left blank. If this value is set to 1
for ‘serial’ execution mode, or is equal to the ‘size’ parameter for ‘parallel’ execution
mode, it will not be displayed explicitly in the configuration file.

Processes Per Copy: The number of processes each copy of the module receives
at runtime. This is stored in the ‘processes per copy’ parameter of the configuration
file, and is used to derive the ‘size’ parameter by the driver if the size is left blank. If
this value is set to 1 for ‘parallel’ execution mode, or is equal to the ‘size’ parameter
for ‘serial’ execution mode, it will not be displayed explicitly in the configuration file.
If ‘size’, ‘copies’, and ‘processes per copy’ are all left blank on the configuration file,
the module will not be executed at all.

Threads Per Process: The number of openMP threads each process of the module
creates at runtime. This is stored in the ‘threads per process’ parameter of the con-
figuration file, is used to calculate the ‘cores’ parameter along with ‘size’ implicitly,
and is required for any modules that utilize openMP. If this is left blank inside the
configuration file, it will default to 1.

Number of GPU: The number of GPU to allocate for the module. This is stored
in the ‘num gpu’ parameter of the configuration file (if applicable). This will default
to 0 unless specified.

Source Code File: The file containing the unmodified source code for the module.
This file is copy converted by ModMaker into a function with all of it's MPI calls
modified to operate in a sub-communicator. This file location is necessary for any
‘Managed’ modules that wish to call program files that cannot be run with a simple
command.

Module Split Directory: The copied name of the directories that house the input,
output, and code for the module to be run. When the driver begins a module, it splits
the work over its processors, creating a directory for each of them to work on files
from. The split directories names will have a ‘-N ’ on the ends, where N represents the
processor of that module (‘HELLO-0’ would belong to the first processor, ’HELLO-1’
to the second, and so on).

22

4.2 Workflow Tab

The third tab is “Create Workflow”, and it is here that the directions for the engine
are established. The workflow itself can be compared to an employee schedule, except
the employees in this case are the processors. Inside the configuration file, the second
half is one large set labeled ‘workflow’. Inside this set exist ‘sets’, and each set houses
one or more ‘groups’, each with their own properties. Aside from the nested sets
titled ‘groups’, each ‘set’ also contains a value for its iterations, titled ‘num set runs’
in the configuration file.

Figure 23: Create Workflow

Inside of each ‘group’ exists:

• The Group's Module Order,

• The Group's Iteration Count,

• The Group's Dependencies, and

• The Group's Total Processor Count (Group Size).

Group Order: The order the modules will run inside a group. The modules listed
here run one after another sequentially, until it is completed. This may be run multiple
times with varying group/set iterations, and the order determines the total amount
of processors. Inside the workflow configuration file, this is listed as ‘order’.

Group Iterations: The number of times the group will be run. This must be at
least 1, and each run will execute the entire order once. Inside the configuration file,
this is named ‘iterations’.

Group Dependencies: The list of other groups the group is dependent on. This
option is listed as ‘depends’ inside the configuration file, and until every group in this

23

list has run, the group will not start a single module. Groups can only be dependent
on groups in the same set, and if either (1) a name is given for a group that does not
exist in the current set, or (2) there is a dependency circle, where 2 or more groups
are dependent on each other, the workflow engine will reject the configuration file and
self-terminate.

Group Size: The amount of processors a group requires for all of its modules.
Based on the entry of modules (which can be done manually or through the module
buttons), this value will change once a group is saved. This is not displayed in the
configuration file, but is used by the GUI to determine how many processors to call
when the driver is executed.

Once the user is finished creating their groups and sets, there is a ‘Save as’ button,
which allows them to write all their stored information about the modules and the
workflow to a configuration file, where it is formatted and then displayed in the text
box. If there are any errors, the user can either correct them inside the file itself, or
edit the options in the GUI and overwrite it by saving again.

4.3 Driver Tab

The fourth, and most automated tab is “Modify Driver”, where most of the GUI-side
of work for ‘Managed’ mode occurs. When the user hits the ‘Create Driver’ button,
they are prompted to inform them about what files will be overwritten if the GUI is
successful. If they accept, several processes will occur behind the scenes, resulting in
the driver being modified:

24

Figure 24: Modify Driver

The subsequent processes are:

• Turning Main Codes into Module Function Codes(Managed only),

• Creating Header Files for each Managed Module(Managed only),

• Creating Libraries for each Module Function Code,

• Including each Header File in the Driver, and

• Compiling the Driver Code and Linking Libraries.

Make Module Function: The source codes the user entered previously are not usab
le by the driver in their uncompiled states, so they are first converted into functions
(with the function name matching the module name given) that take in a pointer
to the struct ‘IEL exec info t’ from the driver when called. The original files are
preserved in their previous locations, unless they were in the list of names of files to
be overwritten. The converted and unconverted files are then listed in the textbox
of the Driver Tab separately. Note that this step does not occur (1) for automatic
mode, or (2) if there are no managed modules (modules with names that are not
‘MODULE-N ’).

25

Make Header File: For all modules that are managed, there need to be header files
that go into the driver, in order to connect their functions to the workflow later on. In-
stead of their normal includes and such, all that is used is “#include ‘IEL exec info.h”
to pass the struct pointer ‘exec info’ as each function’s argument. For each header
created, there will be a small message listed in the Driver Tab textbox. This step
does not occur for non-Managed modules, as they are covered by ‘modexec.h’.

Make Library: In addition to header files, libraries must be made out of the new
‘Module Function’ files, to be linked to the driver code near the end. For each new
file converted, they are compiled through ‘mpicc’, a wrapper around gcc made for
MPI, with the declaration of the struct pointer ‘exec info’, which contains all the
variables and input arguments the function will need. Once it is compiled into an
object, it must be archived as a library, and placed into the ‘GUI MODS’ directory
for use in driver compilation. In addition to all managed modules, this occurs for the
file ‘modexec.c’, which is the function code used to run ‘Automatic’ modules. This
step occurs in both modes.

Include and Link: Lastly, the new headers and libraries are connected to the
driver through ‘-I’ and ‘-L’ commands, and based on the modules, a driver is compiled
(‘driverAM’ or ‘driverMM’).

4.4 Launch and Output Tabs

The last two tabs are “Launch-DIEL” and “DIEL-Result”, which serve as launching
and output displaying tabs, respectively. Inside the ‘Launch’ tab, there is a command
listed, and a run button. The command is automatically generated based on the cre-
ated groups and sets, so all the user can do here is hit ‘Run’, and the driver will get
started.

26

Figure 25: Launch DIEL

Once it is finished, the ‘Result’ tab will change color, signifying the user should
proceed. Once the final tab is opened, it will revert back to its original color, and the
output of the driver running will be displayed, along with any internal or extrenal
errors that occur.

5 Future Work

• Automatic generation of SLURM batch scripts for running on several XSEDE
supercomputers

• Add support for using LAMMPS in the GUI, as well as other pre-prepared
libraries

• Further improvements to the useability and user friendliness of the interface

• Increased error checking in the GUI

27

