
EEG Network Analysis: Cognitive Diagnosis of Alzheimer’s Disease 1 
 

Functional EEG Network Analysis for Cognitive Diagnosis of 
Alzheimer’s Disease 

 

Arden-Guo Jinxu 
City University of Hong Kong 
jinxuguo2-c@my.cityu.edu.hk 

 
Jeremy-Liu Zihuan 

City University of Hong Kong 
liuzihuan16@gmail.com 

 
Joshua Dunkley 

University of Tennessee, Knoxville 
jdunkley@vols.utk.edu 

 
Xiaopeng Zhao 

University of Tennessee, Knoxville 
xzhao9@utk.edu 

 
 
 

Funding and Resources provided by the Joint Institute of Computational Sciences (JICS) 



EEG Network Analysis: Cognitive Diagnosis of Alzheimer’s Disease 2 
 

Abstract 
Electroencephalogram (EEG) is a test for electrical activity in the brain. Using Machine 

Learning approaches and adopting ideas from social network analysis (SNA), we construct a 
causality network to visually and mathematically analyze the cognitive function of EEG’s of a 
group of 15 normal control (NC) subjects, 16 mild cognitive impairment (MCI) patients, and 17 
Alzheimer’s Disease (AD) patients. The functional EEG network for each subject is represented 
by a 30x30 matrix, where each element depicts a causal relation between two EEG channels. The 
network is visualized through a colored map of the matrix that illustrates the strength of causal 
relationship among the EEG channels. The cognitive state (NC, MCI, or AD) of a subject is 
classified using features of the functional EEG Network, including color maps and eigenvalues. 

 
Keywords: Electroencephalogram (EEG), Social Network Analysis (SNA), Principal 

component analysis (PCA), Support Vector Machines (SVM), Leave-One-Out (LOO) Cross 
Validation  
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1 Introduction 
1.1 Background 

Alzheimer’s Disease, one of the common forms of irreversible neurodegenerative dementia, 
is a progressive brain disorder which slowly destroys mentation, memory, and eventually, 
the ability to conduct the simplest tasks. The statistics from the World Alzheimer Report 
(2018) show that the number of people with dementia is estimated to be 50 million today. 
According to the U.S. department of health and human services (2019), Alzheimer’s disease 
has been the sixth leading cause of death in the United States. 

Although some factors, including increasing age and genetic inheritance, are well-known 
risks for Alzheimer’s Disease, a combination of lifestyle and circumstantial factors plays a 
vital role as well.  

According to the Alzheimer’s Association (2018), 18% of the projects have been 
investigating the diagnosis, assessment and monitoring of Alzheimer’s Disease. The rest of 
have been looking into the molecular pathogenesis, clinical intervention, health care 
enhancement, etc. 

Unfortunately, there is no full-proof method for the diagnosis of Alzheimer’s disease 
currently. Self-reporting about symptoms is still a key component of the diagnostic 
assessment. Other than that, diagnosis is based on fluid and imaging biomarkers. Currently, 
amyloid-specific PET ligands including florbetaben, flumetamol and florbetapir are in 
practice for the detection of AD ( J. Weller and A. Budson, 2018), however, it has been 
limited owning to its unaffordable costs for the majority of patients, thus most patients who 
undergo such method are the participants of clinical trials. 

Electroencephalography (EEG) was introduced as a tool of documenting human brain 
activity in 1929. Since EEG directly reflects cortical neural functioning (U. Hegerl, 1997) 
with high efficiency and considerably low cost, it remains a vital role in helping the detection 
of Alzheimer’s Disease.  

The EEG is a recording of the electrical activity of the brain used electrodes attached to 
scalp. During recent years, there have been extensive investigations of the potential use of 
EEG for the clinical diagnosis of Alzheimer’s disease. Currently, accuracies up to 90% have 
been reported using methods such as neurological and medical records (Raymundo, 2018). 
However, depending on such approaches requires experienced clinicians, lengthy sessions 
and high expenses. An efficient, low-cost approach with EEG for AD detection is currently 
being studied. A common problem with this is that numerous factors lead to the loss of data, 
which yields inaccurate detection for AD. 

Social Network Analysis, based on networks and graph theory, poses an advantage in 
revealing the insights in the intricate but organized network structures as well as 
relationships among the entities (Elisabeth, 2013). This technique has been exploited by 
various authors to study brain function. For example, previous research (Yongoh, 2017) has 
measured the brain effective connectivity from EEG data by network analysis. In this article, 
the team attempts to create a functional EEG network to investigate the inter-channel 
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causation of EEG data for each cognitive state and characterize corresponding features for 
classification and accurate diagnosis. 

 
1.2 Objectives 

The goal of this research was to create a functional EEG Network that depicted the casual 
relationship between EEG channels. In order to find the relationships among the channels, 
the following objectives were established: 

Ø Build reconstruction models that would predict lost data from EEG channels using 
the data from neighboring channels. 

Ø Calculate the correlation coefficients among the original and reconstructed data to 
find the p-values explaining the greatest relationships between certain channels.  

Ø Create a visual representation of the brain activity illustrating the causal 
relationship between EEG channels 

 
2 Methods 
2.1 Data 

Raw EEG data was gathered from 48 subjects of various cognitive states: 15 NC, 16 MCI 
patients, and 17 AD patients. Each subject had numerous channels of data; however, 30 
common channels were used for the purpose of this research. The physiological signals 
gathered from each EEG channel were sampled at 1-minute intervals with a sampling rate of 
500 Hz, providing 30000 data points for each channel. The data was filtered for power-line 
noise at 60 Hz and artifacts due to blinking and muscle twitches prior to the start of the 
research.  

 
2.2 Pre-processing 

Before data processing and model training, subjects are split into three groups based on 
cognitive state: NC, MCI, or AD. For each training group, a leave-one-out cross validation 
training is applied where 1 subject is used for testing while the rest of the subjects are used 
for training. For every subject in each training set, all common EEG channels are compacted 
to form one continuous signal. Normalization is applied to the newly created signal to scale 
the data to unit variance. 

 
2.3 Analysis 

An adaption of social network analysis was adopted to create our functional EEG Network. 
Social Network Analysis (SNA) observes the relational link between individuals, groups, 
and other entities, similar to nodes in a graph. SNA can also provide a visual and 
mathematical representation of these nodes to better understand and measure the strength of 
these relationships. Using this approach, the functional EEG Network was built in the 
following steps: 
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1) Build a 30x30 matrix where each element mij in the matrix contains a reconstruction 
model for reconstruction of channel j using channel i. 

2) Use reconstructed EEG data to make a 30x30 correlation matrix of the causal 
relationships between EEG channels i and j. 

3) Create a color map using the values of the correlation matrix and perform image 
classification 

4) Use PCA to reduce the dimensions of the matrix and classify using an SVM model 
 

In Step 1, leave-one-out cross validation was not used. Instead, reconstruction was based 
on subject n’s EEG data and applying a 75/25 split on the data. Essentially, 75%, or the first 
45-seconds, of each channel’s signal is used for training while the rest of the data is used for 
testing. Fig. 1 shows the schematic creation of the models as well as the creation of the 
correlation matrix outlined in Step 2. 

With the 45-seconds of training data, reconstruction models are created for each pair of 
EEG channels, which predict the physiological signal of a given channel j using EEG data 
only from channel i. Each model acts as an element in a 30x30 causality matrix representing 
an EEG Network for each subject. For each network, the models consist of three layers: an 
input layer, a hidden layer, and an output layer. The input layer takes data from each channel 
individually yet consists of 50 neurons. In order to pass in 50 input variables, each channel’s 
signal is right-shifted 49 times. Each right-shifted signal truncates a data point off the right 
end of the signal and replaces the first data point with a 0 and is then stored in an array. The 
truncation and appending of data are to ensure that the size of each signal is the same after 
each right shift. The hidden layer contains 15 hidden neurons and uses a rectified linear unit 
activation function, and the output layer contains one neuron and uses a linear activation 
function. The initial weights for the reconstruction models are normally distributed. 

 

 
Fig. 1. Schematic for the creation of the EEG network depicting the causal relationship between channels i 

and j. M(i,j) represents the model for using channel i to reconstruct channel j. Each value of ri,j is treated as an 
element in a 30x30 causality matrix. This process is applied to each subject, resulting in 48 different matrices. 

 
In Step 2, after constructing the causality matrix, the remaining 25% of the data extracted 

for testing and creating a similar matrix depicting the causal relationship for the EEG 
Network. Fig. 2 illustrates the structure of the matrix for the EEG Network. Similar to 
training, the testing data is right shifted as well to ensure 50 input variables and similar sizes. 
Data from channel i is passed into the model and reconstructed data for channel j is produced. 
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The signal that is reconstructed for channel j is compared to the original signal of channel i 
to find a causality relationship. Comparison is done by calculating Pearson’s correlation 
coefficient r between the two datasets shown in Eq. (1): 

 
𝑟 = #$%(',))

+,+-
          (1) 

 
where 𝜎' represents the standard deviation of the reconstructed EEG data for channel j, 

𝜎)  represents the standard deviation of the raw EEG data for channel i, and COV(X, Y) 
represents the covariance of the reconstructed and raw EEG data.  

 

 
Fig. 2. Schematic for the structure of the 30x30 matrix for the EEG Network. The matrix structure is used 

for model creation as well as storing the correlation coefficients for channels i and j. Helps to illustrate the 
causal relationship for each channel and is later used for image classification. 

 
Pearson’s correlation coefficient measures the linear dependency between two datasets X 

and Y. Correlation coefficient values of r closer to 1 or -1 represent stronger correlations 
while values closer to 0 represent weaker correlations. The Pearson correlation coefficient is 
calculated using the scipt.stats.pearsonr function in Python, where the reconstructed and 
original data are the arguments passed into the function. Each coefficient value is saved in 
another 30x30 matrix structured similarly to the one mentioned above. In order to save time 
and avoid needless calculations, it is assumed that the correlation coefficient along the 
diagonal of the matrix is 1, i.e. if channel i and channel j are the same, their linear correlation 
should equal 1. 

In Step 3, we use visualization techniques to illustrate the causal relationship between 
each channel in the EEG network. Since the EEG network is represented as a 30x30 matrix, 
we characterize each element in the matrix as a pixel in an image and the value of each 
element as the color index of the pixel. This means the EEG network can be visualized as a 
colored image of 900 pixels. By using each correlation coefficient as a value on a grey-scale 
color index, the causal relationship between EEG channel i and j is mapped out on a graph. 
After grey-scaled graphs have been created for the 48 subjects, they are separated into three 
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separate categories based on the subjects’ cognitive states: NC, MCI, or AD. The Deep 
Neural Network Toolbox in MATLAB is then used to create and train a model for image 
classification.  

Using the leave-one-out principle, a model is trained for each of the 48 subjects using the 
other 47 as training data. The accuracy and predicted labels obtained from testing are stored 
in a 1x48 array, where the first 17 elements represent AD subjects, the next 16 elements 
represent MCI subjects, and the last 15 elements represent the NC subjects. The accuracy 
scores are later counted to find the true accuracy of the model.  

In Step 4, a separate approach was taken for classification of subjects using the EEG 
Network. Instead of using image classification to classify subjects into their respective 
cognitive groups, principle component analysis (PCA) and support vector machines (SVM) 
were applied to the data. Since each subject had 900 correlation coefficient values, PCA was 
applied to reduce the dimensions of the data into two features. This was done in two ways: 
by calculating the eigenvalues for each row and by calculating column means for the data. 
Each method reduced the 30x30 matrix into a 30x1 matrix for each subject in which PCA 
was then directly applied to extract two features. The two features were then plotted against 
each other on a graph and then an SVM model was created based on the newly reduced data.  

 
3 Results 

1. Single-channel reconstruction 

 

Fig. 3. Sample of colored-maps of correlation matrices for AD-subjects. The correlation matrices were 
created from the functional EEG Network. 
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The EEG Network was built using channel-to-channel reconstruction for each subject. For 
each network, a 30x30 matrix of correlation coefficients was constructed. Each correlation 
coefficient represents the causal relationship between channel i and channel j, and is used as a 
color index in a 30x30 graph to visualize the causal relationship. Fig. 3, Fig. 4, and Fig. 5 show 
some samples of the visualized matrices for four random subjects from each cognitive group: NC, 
MCI, and AD. Based on observations, the matrices aren’t fully symmetric, meaning the correlation 
coefficient for ri,j isn’t the same as rj,i. Also, subjects in the AD-category appeared to have strong 
channel relationships than those in the MCI- or NC-category.   

Image classification was performed on the visuals using the Deep Neural Network Toolbox in 
MATLAB. The results of the classification model are presented in Table 1. Of the subjects 
classified,  5 were correctly identified as NC, 10 were correctly identified as MCI patients, and 7 
were correctly identified for AD patients. Only for the MCI patients were the majority of the 
predictions accurate. Overall, the prediction accuracy of the classification model was 45.8%. 
 

Predicted classes 

 NC MCI AD  

True classes NC 5 4 6 33.3% 

MCI 3 10 3 62.5% 

AD 2 8 7 41.2% 
 50% 45.5% 43.8% Overall 

Acc: 
    45.8% 

 
Table 1. Confusion matrix of image classification using correlation matrices 

Fig. 4. Sample of colored-maps of correlation matrices for MCI-subjects. The correlation matrices 
were created from the functional EEG Network. 

 

Fig. 5. Sample of colored-maps of correlation matrices for NC-subjects. The correlation matrices 
were created from the functional EEG Network. 



EEG Network Analysis: Cognitive Diagnosis of Alzheimer’s Disease 9 
 

Another classification approach we took was using PCA and SVM models in the hopes to 
improve or achieve the same accuracy rate of our model or those used in past research. Three 
different sets of features were used to perform PCA and SVM. The first set of features consisted 
of performing PCA on the eigenvalues of the correlation matrices. The top two features were 
plotted on the xy-axis in which it was concluded that using an SVM would be impossible to classify 
the data. As shown in Fig. 6, using an SVM model wouldn’t have helped to distinguish the subjects 
by their features as the data mostly clusters around a similar area.  

 

 
Fig. 6. Top two features of PCA on eigenvalues of correlation matrix 

 
For the second set of features, column averages of the correlation matrices were used as 

features for our SVM model. This meant that our model would have to attempt to classify patients 
along a 30-dimensional plane of features. The results of the SVM model are shown in Table 2. 
For our model, 2 were correctly identified as NC, 5 were correctly identified as MCI-patients, and 
14 were identified as AD-patients. The overall prediction accuracy was 43.75%. Although the 
accuracy rate of the model was not greater than the one used for image classification, the SVM 
model had a higher accuracy rate for correctly identifying patients in the AD-category.  

 
Predicted classes 
 NC MCI AD  

True classes NC 2 1 12 13.33% 
MCI 0 5 11 31.25% 
AD 1 2 14 82.3% 
 66.67% 62.5% 37.84% Overall 

Acc: 
    43.75% 

 
Table 2. Confusion matrix of classification using the column means of the correlation matrix 
For the third set of features, eigenvalues were calculated for the correlation matrices. The linear 

algebra library in Python was used to calculate 30 eigenvalues for each correlation matrix; however, 
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each eigenvalue was returned as a complex number. In order to use SVM, the magnitude of each 
eigenvalue was calculated. Using the same method for the column averages, an SVM model was 
created in a 30-dimensional plane to classify each patient. According to Table 3, this approach 
had more significant results than the image classification and the column averages. Of all of the 
subjects, only 1 subject from each cognitive group was misclassified. The overall accuracy of the 
SVM model was 93.75%, nearly double of what was obtained during image classification. 
 

Predicted classes 
 NC MCI AD  

True classes NC 14 0 1 93.33% 
MCI 0 15 1 93.75% 
AD 1 0 16 94.12% 
 93.33% 100% 88.89% Overall 

Acc: 
    93.75% 

 
Table 3. Confusion matrix of classification using the magnitude of the eigenvalues of the correlation matrix 

 
4 Conclusion and Discussion 

In this research, we created a functional EEG Network to provide many ways into visualizing 
and classifying EEG data. Adopting the idea of SNA, our EEG Network maps out the causal 
relationships between all EEG channels and accurately reconstructs lost data. Based on the data 
gathered, our EEG Network seems to best classify patients when using the eigenvalues of the 
network as features for classification. Using image classification and column averages was less 
than half of the accuracy obtained from the eigenvalues. Results from principle component 
analysis on the eigenvalues of the correlation matrix show that the subjects didn’t cluster and 
weren’t easily distinguishable by the eye in Fig. 6. They clustered in a curvature making it difficult 
to create an SVM model that would easily group them into their respective cognitive groups. Yet, 
despite the results in Fig. 6, our EEG Network provides promising results as a novel approach to 
EEG analyzation for future research. 

Even with the prediction accuracy from our SVM model in Table 3, there were many 
inaccuracies with some of the other models generated for the network. The SVM model used for 
the column means of the correlation matrix seemed to over-predict patients with Alzheimer’s 
Disease. This could possibly explain why the prediction accuracy of that group was higher than 
others. With over-prediction, the model becomes biased in categorizing other subjects into the AD-
category rather than the MCI-, or NC-category. The model used for image classification had the 
highest prediction accuracy when identifying MCI-patients; however, it did not over-predict any 
singular group like the column mean model. Because most of the colored-maps of the correlation 
matrices showed similar patterns across all subjects, it is possible that the model didn’t obtain 
enough data of distinctive features to properly identify each subject into their respective cognitive 
group. The accuracy of the model could be purely due to random guessing, meaning that the 
prediction accuracy of the model would be extremely inconsistent if it were to be run again 
multiple times with the same dataset.  
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One drawback we had with this research was the small sample size used to train and test the 
models. LOO cross validation compensated for this. In the future, we wish to increase the sample 
size of patients to better train our models and yield higher prediction accuracies. We also wish to 
create separate networks for each cognitive group and compare the structure of the networks to the 
one created in this research. Conclusively, we would create an EEG network for the NC-, MCI-, 
and AD-patients and see if those networks would more precisely reconstruct the EEG data for their 
respective groups and provide a more accurate analysis of the causal relationships between the 
EEG channels.  
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5 Appendix 
5.1 Appendix I: Fig. 7 

 
Fig. 7. Visual representation of the EEG Network for all AD-patients. 
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5.2 Appendix II: Fig. 8 

 
Fig. 8. Visual representation of the EEG Network for all MCI-patients. 
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5.3 Appendix III: Fig. 9 

 
Fig. 9. Visual representation of the EEG Network for all NC-patients. 
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