Accelerating 3D FFT with Half-Precision Floating Point Hardware on GPU

Students: Yanming Kang (HKUST) and Tullia Glaeser (Tulane)
Mentors: Ed D'Azevedo (ORNL) and Stan Tomov (ICL, UTK)

Discrete Fourier Transform (DFT) \& Fast Fourier Transform (FFT)

$\left[\mathrm{O}\left(\mathrm{N}^{2}\right)\right]$: for num. computations in digital signal processing (incl fast convolution, spectrum analysis)

- N discrete time series signals \rightarrow (into) N discrete frequency components (amplitude + phase)
- FFT [O(NlogN)]: Fast algorithms for DFT -- widely used num. Algorithm -- plays vital role in many scientific and engineering applications (image processing, speech recog., data analysis, large scale simulations
- Maj. time in large comp. apps
- Cooley + Tukey Algorithm:
i. Symmetry of DFT: $\mathrm{X}_{\mathrm{N}+\mathrm{k}}=\mathrm{X}_{\mathrm{k}}=$
ii. Divide DFT alg. into odd + even

- \rightarrow halved the computations to be $\mathrm{O}(2 \mathrm{M})$ where M is half of $\mathrm{N} \rightarrow \mathrm{O}(\mathrm{N})$
i. Keep doing this recursively \rightarrow halves computation cost every time $\rightarrow \mathrm{O}(\mathrm{NlogN})$
- To keep improving performance/time -- implement it on GPU

Implementing 1D, 2D, \& 3D FFT

- ID FFT of x :
a. $\quad x=1 D$ array, $B(4 \times N / 4)$ matrices or $1(4 \times N / 4 \times B)$ tensor $(B=\#$ of batches $)$
b. Find DFT of each of those matrices
c. Multiply by twiddle factor $\left(W=e^{-i 2} \mathrm{kn} / \mathrm{N}\right)$
- 2D FFT:
a. $\mathrm{x}=(\mathrm{m} \times \mathrm{n} \times$ batch $)$
b. Reshape x to be 1 D array [$\mathrm{m} * \mathrm{n}$ * batch, 1, 1]
c. Call 1D FFT on it
d. Transpose \& do 1D FFT in other direction
- 3D (breakdown shown in pic):
a. Take 1D FFT in each direction OR

b. Take 2D FFT in 2 directions \& 1D in last dir.
- MATLAB + CUDA
a. Currently use CUBLAS/CUTLASS and Radix-4

Mixed Precision \& Tensor Cores

- Tensor: "a mathematical object analogous to but more general than a vector, represented by an array of components that are functions of the coordinates of a space" -- large dense matrix
- NVIDIA Volta microarchitecture ft. specialized computing units, Tensor Cores
- tensore core support \rightarrow mixed precision -- matrix multiplication operations done w/ halfprecision input data (FP16)-- the rest FFT done on single precision data (FP32)
- FP16 arithmetic enables Volta Tensor Cores which offer 125 TFlops of computational throughput on generalized matrix-matrix multiplications (GEMMs) and convolutions, an 8X increase over FP32
- Matrix entries multiplied in neural networks are small w/ respect to value of prev. Iter. \rightarrow can use half precision, result is still small in val. \rightarrow result accumulated to other much larger val., in single precision to avoid precision loss
- Deep neural network training = tolerant to precision loss up to certain degree

Inefficiency with Transform -- volta_sgemm_fp16_128x64_nn

[^0]

The FFT (radix-n1) in matrix form

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-\left(i \frac{2 \pi n k}{N}\right)}
$$

Reshape \&
Transpose

N2-Point DFTs

The input vector of size N is reshaped into an N1 * N2 matrix and transposed.

$$
\begin{aligned}
Y=F_{N} X= & \left(W_{N} \times F_{n 2} \cdot \operatorname{reshape}(X, n 1, n 2)^{T}\right) F_{n 1} \\
& \text { where }\left(W_{N}\right)_{k, l}=e^{-\frac{2 \pi i k l}{N}}
\end{aligned}
$$

We use $\mathrm{n} 1=4$ since $\mathrm{F} 4=[1$ error.

1

The algorithm

```
//Batched 1d FFT of length N
Radix_4_FFT_recursion(X, N, Batch):
    If N=4 then
        Return F4 * X
                            (batched gemm)
    // See X as a (4 by N/4 by Batch) array
    permute(X,[2,1,3])
    //X as a (N/4 by 4 by Batch) array
    Y <-Radix_4_FFT_recursion(X, N/4, Batch*4)
    Multiply elementwise Y with W_N
    Return Y * F4
        (batched gemm)
End
```

Splitting is done before gemm
Combining is done after gemm
$\mathrm{x}(32)=\mathrm{s} 1(32)$ * x _hi(16) $+\mathrm{s} 2(32)$ * $\mathrm{x}_{-} \mathrm{lo}(16)$,
Gemm is done to $\mathrm{x}_{-} \mathrm{hi}, \mathrm{x}_{-}$lo

CUTLASS (CUDA Templates for Linear Algebra Subroutines)

The most expensive step in the recursion: the second batched gemm
Result1 = X * F4_re; Result2 = X * F4_im
where
F4_re, F4_im: 4 by 4, fp16
X=[X_re_hi, X_re_lo, X_im_hi, X_im_lo]: m by 4 by Batch*4, fp16
Result1, Result2: m by 4 by Batch*4, fp32
For batch size $=\mathrm{B}$, length $=\mathrm{N}$ input, will do gemms for:
$\mathrm{m}=\mathrm{N}, \quad$ Batch $=\mathrm{B}$
$\mathrm{m}=\mathrm{N} / 4, \quad$ Batch $=4 \mathrm{~B}$
$\mathrm{m}=4, \quad$ Batch $=\mathrm{NB} / 4$
cuBlas is not optimized for slender matrix multiplication (volta_sgemm_fp16_128x64_nn)

CUTLASS vs cuBlas

m by $4^{*} 4$ by 4 matrix multiplication

m	Batch size	cuBlas(ms)	cutlass(ms)	Mean error
64	1048576	40.7779	13.4457	$1.23754 \mathrm{e}-12$
256	65536	5.10469	3.07621	$1.27887 \mathrm{e}-12$
256	262144	20.4031	12.2688	$1.24481 \mathrm{e}-12$
1024	16384	5.07802	3.00108	$1.23879 \mathrm{e}-12$
1024	65536	20.2993	11.9628	$1.24625 \mathrm{e}-12$
4096	4096	5.08486	3.00046	$1.26754 \mathrm{e}-12$
4096	16384	20.2965	11.882	$1.22616 \mathrm{e}-12$
16384	4096	44.524	11.8838	$1.23812 \mathrm{e}-12$

In the Near Future: Radix-2 vs. Radix-4

- Radix-2 algorithms: 2^{v} data points
a. decimation-in-time (DIT): Simplest + most common form of Cooley-Tukey alg
i. DFTs of even- \& odd-indexed inputs, repeat recursively $(\mathrm{O}(\mathrm{NlogN}))$
b. Decimation-in-frequency (DIF): (O(NlogN)) -- divide + conquer
i. split DFT into 2 summations $[(0 \rightarrow \mathrm{~N} / 2)+(\mathrm{N} / 2 \rightarrow \mathrm{~N})]$
ii. Split those split summations into even \& odd
iii. Repeat recursively
- Currently using radix-4 (4^{v} data pts)
- Why radix-2?
a. DFT of identity [2,2] matrix = real matrix (not complex) \& exactly representable in FP16
b. Use tensor cores to implement it
c. ALTHOUGH radix-4 $=$ more efficient when $\mathrm{N}=2^{\mathrm{v}}$

Citations

- https://www.jics.utk.edu/files/images/recsem-reu/2018/fft/Report.pdf
- https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
- https://arxiv.org/pdf/1803.04014.pdf
- http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

[^0]: