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Introduction

e Whatis a hyperparameter?

They are neural network “presets” like
network architecture, learning rate, batch
size, and more.

e Why do we need to optimize the
hyperparameters?

A poor choice of hyperparameters can
cause a network’s accuracy to converge
slowly or not at all.

Hyperparameter
tuning

O

O Best hyperparameters

Model training

O Madel parameters



Introduction

e What are some obstacles to optimizing hyperparameters?
o The Curse of Dimensionality
o Highly irregular (nonconvex, nondifferentiable) search spaces

e What are some standard hyperparameter optimization techniques?
o Classic Approaches: Grid Search, Random Search
o Modern Approaches: Early Stopping, Evolutionary Algorithms



Part 1
An Early Stopping Algorithm

Based on Learning Curve Matching

Chris Ouyang



Hyperparameter Algorithms

e Hyperparameter Selection: |
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. .. Pool Early Stopping
Bayesian optimization ;4—) Hyperparameter Algorithm
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LCM Algorithm: Flow Chart and Terms
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LCM Algorithm: Cumulation Stage

Learning Curve with performance
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LCM Algorithm: Checking Stage

Data Set: Learning Curve
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LCM Algorithm: Checking Stage

Distance Function F
(suchas L1, L2, L)
Distance List: Data Set: Predicted Performance:
[Distance 1, [Performance 1, Performance j
Learning Curve D%stance_Z, Performance 2, ' '
» Distance 3, Performance 3, o/ The rank of it: rank j
[L 1, L 2, L3, ..... , Dist 4 Port 4
L istance erformance 4,
= e The rank percentage:
Distance m] Performance m] Percentage j
Data Set:
[L11,L12,L13, ..., L1k], A
[L21, 122,123, ..., L2k],
[L31,L32,L33, ..., L3k],
[L41, 142,143, ..., L4k], v ¥
[Lml, Lm2, Lm3, ..., Lmk] The nearest neighbor j := argmin(Distance list) ISftcl));rt_rJa ;lill(lege;p_rate.
Otherwise, continue

training.
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LCM Algorithm: Comparisons

Network: Only one dense layer

Dataset: MNIST

Optimizer: stochastic gradient descent

Hyperparameter: Epochs, batch sizes, learning rate, momentum and decay
Benchmark: Random search

Times: 9
Trials Computer Time (S) Best Performance (%)
LCM 100 778.50 97.10
Random 100 3657.75 97.41

Remark: In 5 of 9 experiments, two algorithms got the same optimal
hyperparameters.
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LCM Algorithm: Comparisons

Network: Only one dense layer

Dataset: MNIST

Optimizer: stochastic gradient descent

Hyperparameter: Epochs, batch sizes, learning rate, momentum and decay
Benchmark: Random search

Times: 6
Trials Computer Time (S) Best Performance (%)
LCM 37.67 4800 97.82
Random 67.33 4800 97.69

Remark: In 4 of 6 experiments, two algorithms got the same optimal
hyperparameters.
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LCM Algorithm: Comparisons

e Network: Four CNN layers and several dense layers
e Dataset: CIFARIO
e Optimizer: Adam
e Hyperparameter: More than 10 hyperparameters
e Benchmark: Random search
e Times: 12
Trials Computer Time (S) Best Performance (%)
LCM 100 8069.08 67.05
Random 100 26498.00 67.26

Remark: in 7 of 12 experiments, two algorithms got the same optimal
hyperparameters.
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Part 11

Population Based Training with MagmaDNN
and OpenDIEL

Daniel McBride
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e Whatis Population Based Training
(PBT)?

115

110

PBT is an evolutionary hyperparameter
optimization algorithm.

e Evolutionary optimization algorithm:

use natural models to inspire a particular approach

to traversing a search space. One classic case is th

Particle Swarm Optimization algorithm, inspired b

the swarming behavior of bees.
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PBT: Background

e What are the benefits of PBT?

PBT outperforms the standard hyperparameter tuning benchmarks. These benchmark
algorithms, Grid Search and Random Search, each have their own limitations,
which PBT overcomes.

e Why should we implement it on MagmaDNN and OpenDIEL?
o MagmaDNN and OpenDIEL are engineered for supercomputers.
o The current standard implementation (Ray-Tune: shared memory model) has a
scalability bottleneck.
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PBT: Algorithm

How does the PBT Algorithm work?

Population Model

Stochasticity

Explore / Exploit

Early Stopping

Evolution

Adaptive Hyperparameter Scheduling
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PBT: Algorithm

How does the PBT Algorithm work?

GAN population development FuN population development
[ D
42 45 48 51 54 57 60 63 6.6 1000 2000 3000 4000 5000 6000 7000 8000 9000

Inception Score Cumulative Expected Reward

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride



PBT: Algorithm

Does PBT’s functionality improve on the benchmark algorithms?

Grid Search Random Search PBT

Parallelizability V V

Stochasticity

N XN X K

Adaptive
Hyperparameters

X v
Early Stopping X X
X X
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PBT: Analysis - Dynamic Learning Rate

e Data: MNIST

o 60k images of handwritten digits 0-9
o 256 greyscale pixels per image
o 10 categories (0-9)

e Network: MagmaDNN
o Network Structure: In -> FCB -> Sig -> FCB -> Sig -> FCB -> Qut
©  Weight Optimizer: Stochastic Gradient Descent
©  Number of Epochs =5
o  Batch Size = 32

e Benchmark: constant learning rate = .0016
e Experiments: dynamic learning rate schedules with variable initial values

*FCB := Fully
Connected

Layer with Bias ) )
*Sig := Sigmoid Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride
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PBT: Analysis - Dynamic Learning Rate
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PBT: Goals

e Extend the OpenDIEL Grid Search Application to have PBT functionality, 1.e.
stochasticity and evolution.

e Program more custom MagmaDNN classes to explore the effect of tuning
Convolutional Neural Network hyperparameters.

e Implement PBT on MagmaDNN and OpenDIEL with a distributed Worker, and
overcome the Ray-Tune bottleneck.
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Thanks for listening!
-The Hyperparameter Team




