
Neural Network
Hyperparameter Optimization

Chris Ouyang (CUHK Mathematics) Daniel McBride (UTK Mathematics)

2019 JICS RECSEM REU. Coordinator: Kwai Wong

Presentation Outline
● Introduction

● Part I: An Early Stopping Algorithm Based on Learning Curve Matching
Chris Ouyang

● Part II: Population Based Training with MagmaDNN and OpenDIEL
Daniel McBride

Introduction
● What is a hyperparameter?

They are neural network “presets” like
network architecture, learning rate, batch
size, and more.

● Why do we need to optimize the
hyperparameters?

A poor choice of hyperparameters can
cause a network’s accuracy to converge
slowly or not at all.

Introduction
● What are some obstacles to optimizing hyperparameters?

○ The Curse of Dimensionality
○ Highly irregular (nonconvex, nondifferentiable) search spaces

● What are some standard hyperparameter optimization techniques?
○ Classic Approaches: Grid Search, Random Search
○ Modern Approaches: Early Stopping, Evolutionary Algorithms

Part I
An Early Stopping Algorithm

Based on Learning Curve Matching
Chris Ouyang

Hyperparameter Algorithms

● Hyperparameter Selection:
Random search, grid search and
Bayesian optimization

● Early stopping: Successive Halving
Algorithm (SHA) and Hyperband

● Advanced Algorithm: Evolutionary
Algorithm, such as population based
training (PBT) and swarm
optimization.

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: Flow Chart and Terms

● Trials: Sets contain a single
sample for every
hyperparameter.

● Learning Curves: arrays of
the numerical values of loss
function in some certain
stages during a single
training.

● Check Points: points where
apply LCM to decide whether
abort the training

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

LCM Algorithm: Cumulation Stage

Training Process

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Learning Curve with performance
[Loss_1, Loss_2, Loss_3, Loss_4, Loss_5, …… , Loss_n, Performance]

Cum Pts:
Check Pts:

Data Set:
[LC_1, Performance_1],
[LC_2, Performance_2],
[LC_3, Performance_3],
[LC_4, Performance_4],
……
[LC_m, Performance_m]

LCM Algorithm: Checking Stage

Training Process

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Learning Curve
[Loss_1, Loss_2, Loss_3, …… , Loss_k]

Cum Pts:
Check Pts:

Data Set:
[L11, L12, L13, ..., L1n Performance_1],
[L21, L22, L23, … , L2n Performance_2],
[L31, L32, L33, … , L3n Performance_3],
[L41, L42, L43, … , L4n Performance_4],
……
[Lm1, Lm2, Lm3, … , Lmn, Performance_m]

Data Set:
[L11, L12, L13, ..., L1k],
[L21, L22, L23, … , L2k],
[L31, L32, L33, … , L3k],
[L41, L42, L43, … , L4k],
……
[Lm1, Lm2, Lm3, … , Lmk]

LCM Algorithm: Checking Stage

Learning Curve
[L_1, L_2, L_3, …… ,
L_k]

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Data Set:
[L11, L12, L13, ..., L1k],
[L21, L22, L23, … , L2k],
[L31, L32, L33, … , L3k],
[L41, L42, L43, … , L4k],
……
[Lm1, Lm2, Lm3, … , Lmk]

Distance Function F
(such as L1, L2, L∞)

Distance List:
[Distance_1,
Distance_2,
Distance_3,
Distance_4
…

Distance_m]

The nearest neighbor j := argmin(Distance list)

Data Set:
[Performance_1,
Performance_2,
Performance_3,
Performance_4,
…

Performance_m]

Predicted Performance:
Performance_j

The rank of it: rank_j

The rank percentage:
Percentage_j

If Per_j < keep_rate:
Stop training;
Otherwise, continue
training.

LCM Algorithm: Comparisons
● Network: Only one dense layer
● Dataset: MNIST
● Optimizer: stochastic gradient descent
● Hyperparameter: Epochs, batch sizes, learning rate, momentum and decay
● Benchmark: Random search
● Times: 9

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Trials Computer Time (S) Best Performance (%)

LCM 100 778.50 97.10

Random 100 3657.75 97.41

Remark: In 5 of 9 experiments, two algorithms got the same optimal
hyperparameters.

LCM Algorithm: Comparisons
● Network: Only one dense layer
● Dataset: MNIST
● Optimizer: stochastic gradient descent
● Hyperparameter: Epochs, batch sizes, learning rate, momentum and decay
● Benchmark: Random search
● Times: 6

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Trials Computer Time (S) Best Performance (%)

LCM 37.67 4800 97.82

Random 67.33 4800 97.69

Remark: In 4 of 6 experiments, two algorithms got the same optimal
hyperparameters.

LCM Algorithm: Comparisons
● Network: Four CNN layers and several dense layers
● Dataset: CIFAR10
● Optimizer: Adam
● Hyperparameter: More than 10 hyperparameters
● Benchmark: Random search
● Times: 12

An Early Stopping Algorithm Based on Learning Curve Matching - Chris Ouyang

Trials Computer Time (S) Best Performance (%)

LCM 100 8069.08 67.05

Random 100 26498.00 67.26

Remark: in 7 of 12 experiments, two algorithms got the same optimal
hyperparameters.

Part II
Population Based Training with MagmaDNN

and OpenDIEL
Daniel McBride

PBT: Background

● What is Population Based Training
(PBT)?

PBT is an evolutionary hyperparameter
optimization algorithm.

● Evolutionary optimization algorithms
use natural models to inspire a particular approach
to traversing a search space. One classic case is the
Particle Swarm Optimization algorithm, inspired by
the swarming behavior of bees.

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

Particle Swarm Optimization

PBT: Background

● What are the benefits of PBT?

PBT outperforms the standard hyperparameter tuning benchmarks. These benchmark
algorithms, Grid Search and Random Search, each have their own limitations,
which PBT overcomes.

● Why should we implement it on MagmaDNN and OpenDIEL?
○ MagmaDNN and OpenDIEL are engineered for supercomputers.
○ The current standard implementation (Ray-Tune: shared memory model) has a

scalability bottleneck.

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

PBT: Algorithm

How does the PBT Algorithm work?

● Population Model
● Stochasticity
● Explore / Exploit
● Early Stopping
● Evolution
● Adaptive Hyperparameter Scheduling

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

PBT: Algorithm

How does the PBT Algorithm work?

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

PBT: Algorithm

Does PBT’s functionality improve on the benchmark algorithms?

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

Grid Search Random Search PBT

Parallelizability ✔ ✔ ✔

Stochasticity ✗ ✔ ✔

Early Stopping ✗ ✗ ✔

Adaptive
Hyperparameters ✗ ✗ ✔

PBT: Analysis - Dynamic Learning Rate

● Data: MNIST
○ 60k images of handwritten digits 0-9
○ 256 greyscale pixels per image
○ 10 categories (0-9)

● Network: MagmaDNN
○ Network Structure: In -> FCB -> Sig -> FCB -> Sig -> FCB -> Out
○ Weight Optimizer: Stochastic Gradient Descent
○ Number of Epochs = 5
○ Batch Size = 32

● Benchmark: constant learning rate = .oo16
● Experiments: dynamic learning rate schedules with variable initial values

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

*FCB := Fully
Connected

Layer with Bias
*Sig := Sigmoid
Activation

PBT: Analysis - Dynamic Learning Rate

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

PBT: Goals

● Extend the OpenDIEL Grid Search Application to have PBT functionality, i.e.
stochasticity and evolution.

● Program more custom MagmaDNN classes to explore the effect of tuning
Convolutional Neural Network hyperparameters.

● Implement PBT on MagmaDNN and OpenDIEL with a distributed Worker, and
overcome the Ray-Tune bottleneck.

Population Based Training with MagmaDNN and OpenDIEL - Daniel McBride

Thanks for listening!
-The Hyperparameter Team

