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Introduction

The use of artificial intelligence, machine learning, and deep neural networks continues to expand in indus-

tries as far afield as speech recognition, medical imaging diagnostics, and traffic engineering [1]. Such industries

are critical not only to the convenience of the users of Siri and Alexa, but also to the health and safety of hospital

patients and the drivers and passengers on our roads. This short list of AI-dependent industries is but a small

sample of both private commercial and governmental services in which the significance of deep neural networks

is becoming continually more entrenched, and as such, a proper understanding of how to correctly implement

and maintain sophisticated machine learning systems is increasingly important. In designing neural networks, the

use of which may ultimately dominate the artificial intelligence industry, a paramount concern is the choice of

hyperparameters [2].

The efficacy of a given neural network of sufficient complexity, whose interconnected nodes are essentially

a chain of simple functions, the composition of which approximates either a classification task, or some other

predictive objective, is determined by the weights assigned to each of these nodes [1]. The optimal weights,

the network’s parameters, are discovered through what is termed neural network training. The design decisions

made before this training regiment, including, among others, those concerning network architecture, node weight

optimization methods, and input data processing, are what are called the neural network’s hyperparameters. Care

must be taken when choosing hyperparameters, because a poor choice of hyperparameters may cause a network’s

weights to converge slowly during training, or even worse, they may not converge at all, resulting in much wasted

computing resources [2]. As these design decisions have been of particular import to data scientists since they

began to endeavor in the construction of neural networks, there is a body of theory devoted to solutions to the

problem of how hyperparameters may best be optimized.

Classical approaches to hyperparameter optimization include Grid Search and Random Search [2]. How-

ever, both of these approaches are subject to inefficiencies which more modern approaches, like evolutionary

hyperparameter optimization algorithms such as Population Based Training, attempt to overcome [3]. Although

there are distinct differences between the classic and the modern approach, the intricacies of which will be touched

on below, there is broad consensus that utilizing the power of parallel computing is a most effective jumping-off

point for any hyperparameter optimization algorithm.
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Motivation and Research Objectives

Leveraging frameworks like MagmaDNN and OpenDIEL, optimized for hybrid CPU/GPU architectures

and distributed multi-node tasks, as well as exploring novel early stopping hyperparameter tuning algorithms

amenable to large distributed systems, would likely improve the scalability and efficiency of machine learning

aided research, such as Oak Ridge National Laboratory’s ongoing materials science research into electron mi-

croscopy image classification using the Summit supercomputer [4]. Such complex machine learning classification

tasks require comparably complex neural networks. In the case of image datasets with a large number of data

points, convolutional neural networks are most often used [5]. Naturally, as the complexity of a network grows so

does the complexity of the space of possible hyperparameter configurations.

Common characteristics of hyperparameter search spaces include non-convexity as well as non-differentiability,

and thus the hyperparameter optimization community has developed algorithms based on global optimization the-

ory [6]. The evolutionary algorithm, Population Based Training, developed for UC Berkeley’s hyperparameter

optimization framework Ray Tune is one such algorithm. While the materials science division at ORNL is cur-

rently employing the Ray Tune system, it suffers from a scalability bottleneck due to its shared memory model

built with the Spark framework used as a backend. Hence, one of the primary objectives of this research project

was to overcome this bottleneck by utilizing neural network framework MagmaDNN’s native model parallelization

in an implementation of Ray Tune’s Population Based Training algorithm.

As hyperparameter optimization is still a nascent field, a duel objective of this research project was the

implementation of novel hyperparameter tuning algorithms that use insights from recent advances in the field.

Many algorithms published in the last few years utilize early stopping, and thus this technique was further ex-

plored [3]. Likewise, distributed systems were kept in consideration during the development of these experimental

hyperparameter tuning algorithms.

Recording experimental data is central to any scientific research, and so an overarching objective of the

project was to document and organize the results of experiments. These experiments range from proof-of-concept

trials to benchmarking analysis. The clear and concise presentation of these findings, the methodology involved,

and any obstacles encountered is the goal of the present report.
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Learning Curve Matching Algorithm

3.1 Early Stopping

Early stopping algorithms are a class of hyperparameter tuning algorithms. The main purpose is to trigger

the early stopping action based on some explicit criteria during the training process. Figure 3.11 . Successive

Halving Algorithm (SHA) and Hyperband are typical early stopping algorithms which demonstrate the desired im-

plementablity with parallel programming and relatively better performances compared to other popular algorithms,

such as Bayesian optimization [7]. Besides, there is an improved version of SHA, Asynchronous Successive Halv-

ing Algorithm (ASHA), which shows great potential on solving problems with large hyperparameter spaces and it

outperforms other state-of-the-art hyperparameter tuning methods [8].

This chapter is aimed at introducing a new early stopping algorithm, Learning Curve Matching Algorithm

(LCM). The inspiration and implementation of LCM will be discussed. Comparison experiments between LCM

and random search are also described below. The empirical results and experiment limitations will be analyzed

and illuminated. Finally, possible improvements and other future work will be discussed.

3.2 Inspirations and Implementations

The Learning Curve Matching algorithm is inspired by Successive Halving Algorithm (SHA) and Asyn-

chronous Successive Halving Algorithm (ASHA). A rough description of SHA is that for a set of hyperparameter

configurations, the training process is initialized using every hyperparameter configuration synchronously, and

then half of the training processes are stopped early based on their performances when going through several

1In the flow chart, Hyperparameter pool contains all hyparameters needed tuning shows the whole process of hyperparameter tuning and

their properties, such as data types and value ranges; A trial means a hyperparameter configuration, i.e. a set that contains a single sample for

every hyperparameter.

Figure 3.1: A Flow Chart of Hyperparameter Tuning
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(a) The Accumulation Stage

(b) The Checking Stage

Figure 3.2: Two Key Stages in LCM

preset checkpoints during the training process. LCM has a similar paradigm, using synchronous training and

checkpoints. However, the stopping criterion is determined by assessing learning curves instead of performances

in LCM.

There are two key stages in LCM, the accumulation stage and checking stage, as shown in Figure 3.2. In

the accumulation stage, only accumulative points are activated. The value of the loss function at accumulative

points and the corresponding final performances during every complete training, whose combination refers to the

so called learning curve, will be collected for the next stage. In the checking stage, both the accumulative points

and checkpoints will be activated. Besides collecting needed data as in the accumulation stage, learning curve

comparison and early stopping will also be implemented when the training process goes through the checkpoints.To

implement LCM, a set of accumulative points and a set of checkpoints are required. Furthermore, the split rate is

also needed since the division of the whole population n of parameter configurations into these two stages relies

on the split rate r.

As to learning curve comparison, preprocessing is required. Previous learning curves would be cut to keep

the same length as the partial learning curve γ from the model under training. Moreover, there are additional

necessary inputs, the metric d for vector distance calculation and the early-stopping rate s. Based on this metric d

The distances between the learning curve γ and every fitted previous learning curves are calculated and collected

in a list, the distance list. The previous trial which corresponds to the smallest one in the distance list is the

most similar trial i, and its final performance would be viewed as the predicted performance g. According to the

comparison between the rank percentage of performance g and the early stopping rate s, early stopping action

would be triggered or not.Figure 3.3 is a detailed flow chart of learning curve comparison.

Algorithm 1 and Algorithm 2 summarize the above introduction to LCM and provide a complete picture of

LCM. As for the practical implementation, Keras with Tensorflow backend applies suitable functions and classes.

A new subclass of callbacks is defined and would be called during every single training process.
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Figure 3.3: A Flow Chart of learning curve comparison

Algorithm 1 Learning Curve Matching Algorithm
1: Input: number of configurations n, early-stopping rate s, split rate r, set of checkpointsC, set of accumulating

points A and distance metric d

2: Initialization: T = hyperparameter configuration generator(n), performance list Z =

empty list [ ], learning curve list X = empty list [ ]

3: for configuration θ ∈ T do

4: learning curve γ = empty list [ ]

5: check trigger = [length(Z) > n ∗ r]

6: while training do

7: training progress p = get training progress(θ)

8: if p ∈ A then

9: append[γ, get training performance(θ)]

10: if p ∈ C and check trigger then

11: stop training trigger = check(Y, γ, d, s)

12: append[X, γ]

13: append[Z,get final performance(θ)]

14: Output: the best performance max(Z)
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Algorithm 2 The Function: check
1: function CHECK(Y , γ, d, s)

2: Y = fit(X, length(γ)) . keep the first length(γ) elements of every previous learning curve for

comparison

3: D = get distances (Y, γ, d) . compute the distances between γ and every fitted learning curve in

Y based on the metric d

4: the most similar trial i = argmax(D) . find the most similar trial i

5: predicted performance g = Z[i]

6: rank percentage q = get rank percentage(Z, g)

7: Return: (q > s)

Hyperparameter List

Hyperparameter Name Data Type Range

Learning Rate Float Number [0, 1]

Momentum Float Number [0, 1]

Decay Float Number [0, 0.5]

Batch Size Integer {32, 64, 96, 144, 192, 288, 376, 512}

Epochs Integer {3, 4, 5, 6}

Table 3.1: MNIST: Hyperparameter List

3.3 Experiments and Analysis

We conduct two groups of comparison experiments based on two different datasets, MNIST and CIFAR10,

separately. 2 In both of these experiments random search is used as the benchmark.

3.3.1 MNIST

In the MNIST group, the training model is a simple network, which contains only one dense layer and

applies stochastic gradient descent (SGD) as the optimizer. 3 Learning rate, momentum, decay, batch sizes and

epochs are selected to be hyperparameters for tuning. The detailed information of these hyperparameters is listed in

Table 3.1. Given a fixed number of hyperparameter configurations (trials), we repeat the same experiment 9 times.

The average best performances and average computing time of LCM and random search are compared in Table

3.2. Given a fixed computing time, we also repeat the same experiment 5 times. The corresponding experiment

results are shown in Figure 3.4. 4

According to these empirical results, when we fixed the number of hyperparameter configurations, it costs

2Next, we call these two groups MNIST group and CIFAR10 group respectively.
3There are the setting of inputs in LCM: number of configurations n = 500, early-stopping rate s = 0.3, split rate r = 0.01, set of

checkpoints C = {0.01, 0.02, 0.03, ..., 0.99}, set of accumulating points A = {0.2, 0.4, 0.6, 0.8} and distance metric d = L2 (Euclidean

Distance).
4In Figure 3.4, subfigure (a) shows the average best performances. In subfigure (b), the green line indicates the average differences be-

tween their best performances and the columns show two algorithms’ differences in every single experiment, where orange means that LCM

outperforms random search and blue means the opposite. Moreover, subfigure (c) shows two algorithms’ standard deviation (SD) of the best

performances in every group of fixed-computing-time experiments.
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Algorithm Name Trials Computing Time (s) Best Performance (%)

LCM 100 778.50 97.10

Random Search 100 3657.75 97.41

Remark: In 5 of 9 experiments, both algorithms got the same optimal hyperparameter configuration.

Table 3.2: MNIST: Experiment Result 1

(a) Accuracy Results

(b) Accuracy Differences

(c) Standard Deviation

Figure 3.4: MNIST: Experiment Results 2
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less than one third of computing time to implement LCM. Since random search completely goes through every

configuration and always gets the optimal configuration, it is reasonable that random search outperforms slightly in

the best performance. Nevertheless, the accuracy gap (0.31%) is relatively small and acceptable, especially when

time cost is considered. Another interesting point is that, in more than half of the experiments, two algorithms

get the same optimal configuration. On the other hand, if the computing time is fixed, random search slightly

underperforms in the best performance and the gap is around 0.7%. Furthermore, LCM gains a better result

in most of the experiments and completely outperforms with increased computing time, which shows LCM’s

strong performance stability. In the comparison of the two algorithms’ standard deviations, LCM has a smaller

standard deviation in every group of fixed-computing-time experiments. Therefore, LCM is more stable than

random search in the best performance. In summary, LCM shows a huge advantage in time cost and a slightly

worse but comparable performance when the configuration population is fixed. When the computing time is fixed,

LCM performs slightly better and with more stability.

3.3.2 CIFAR10

In the CIFAR10 group, we use a much more complicated model, which has four convolutional neural

network (CNN) layers and several dense layers. The applied optimizer is Adam.5 Considering the increased

complexity of model, much more hyperparameters are selected for tuning, as shown in Table 3.3. Similar with the

MNIST group, we conduct experiments in two different cases, fixing the number of hyperparameter configurations

and fixing computing time. The corresponding results are shown in Table 3.4 and Figure 3.5, respectively.6

In the experiments with a fixed number of configurations, the empirical results are similar to the results in

MNIST group. Compared with random search, LCM achieves a comparable performance with a considerable de-

crease in time cost. Furthermore, In the more than half of experiments, LCM gets the same optimal hyperparameter

configuration as random search. In spite of the increased complexity and sensitivity of the chosen hyperparameters,

LCM maintains the stable performance in the comparison with random search. In the group of fixed computing

time experiments, the results are more attractive. LCM still outperforms while the gap between the two algorithms

is much bigger: the largest gap is over 3%. As for the accuracy differences, LCM gains better results most of the

time. However, the two algorithms’ standard deviations are close in most of the groups. In the aggregate, LCM

shows the same advantages as it does in the MNIST group within a fixed configuration population. With fixed

computing time, LCM shows better performances but comparable stability.

3.3.3 Integrated Analysis

These two groups of experiments show a detailed comparison between LCM and random search. Given

a fixed population of hyperparameter configurations, LCM achieves a comparable performance with considerable

decreasing in computing time. Moreover, the result that in more than half of experiments, two algorithms gain

the same optimal configuration gives us a rough understanding why LCM could reach a comparable performance.

On the other hand, when the computing time is set, LCM outperforms in the most of experiments and always gets

better average best performances. Although The standard deviations of two algorithms in two groups have different

5There are the setting of inputs in LCM: number of configurations n = 800, early-stopping rate s = 0.3, split rate r = 0.01, set of

checkpoints C = {0.01, 0.02, 0.03, ..., 0.99}, set of accumulating points A = {0.2, 0.4, 0.6, 0.8} and distance metric d = L2 (Euclidean

Distance).
6Figure 3.5 has the same structure as Figure 3.4.
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Hyperparameter List

Hyperparameter Name Data Type Range

Learning Rate Float Number [0.001, 0.01]

Beta 1 Float Number [0.85, 0.95]

Beta 2 Float Number [0.985, 0.995]

epsilon Float Number {1e-07, 1e-06, 1e-08, 5e-07, 5e-06}

Batch Size Integer {32, 64, 96, 144, 192, 288, 376, 512}

Epochs Integer {10, 15, 20, 25, 30, 35, 40}

Kernel Size of 1st CNN Integer {2, 3, 4, 5}

Strides of 1st CNN Integer {1, 2}

Dropout After 1st CNN Float Number {0.1, 0.2, 0.3, 0.4, 0.5}

Kernel Size of 2nd CNN Integer {2, 3, 4, 5}

Strides of 2nd CNN Integer {1, 2}

Dropout After 2nd CNN Float Number {0.1, 0.2, 0.3, 0.4, 0.5}

Kernel Size of 3rd CNN Integer {2, 3, 4}

Strides of 3rd CNN Integer {1, 2}

Kernel Size of 4th CNN Integer {2, 3, 4}

Strides of 4th CNN Integer {1, 2}

Number of Dense Layers

After CNN

Integer {1, 2, 3}

Dropout After Dense Float Number { 0.1, 0.2, 0.3, 0.4, 0.5}

Table 3.3: CIFAR10: Hyperparameter List

Algorithm Name Trials Computing Time (s) Best Performance (%)

LCM 100 8069.08 67.05

Random Search 100 26498.00 67.25

Remark: In 7 of 12 experiments, both algorithms got the same optimal hyperparameter configuration.

Table 3.4: CIFAR10: Experiment Result 1
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(a) Accuracy Results

(b) Accuracy Differences

(c) Standard Deviation

Figure 3.5: MNIST: Experiment Results 2
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results, LCM never gets bigger standard deviation then random search. We can deduce that LCM shows a better

performance and at least comparable stability compared with random search. Besides that, the gap of accuracy

differences between two algorithms are enlarged when we use a much more complicated dataset and choose more

hyperparameters. It is reasonable to consider the great potential of LCM in more complex and sensitive cases.

More complicated experiments would likely provide even further evidence to bolster these conclusions.

3.4 Further Discussion

3.4.1 Parallel Programming and ALCM

Inspired by SHA and ASHA, Asynchronous Learning Curve Matching algorithm (ALCM) is aimed at the

asynchronous implementation of LCM and better utilization of parallel programming. Roughly, LCM can be

viewed as an instance of ALCM, with only one worker.

Algorithm 3 Asynchronous Learning Curve Matching
1: Input: number of configurations n, early-stopping rate s, split rate r, set of checkpointsC, set of accumulating

points A and distance metric d

2: Initialization: T = hyperparameter configuration generator(n), performance list Z =

empty list [ ], learning curve list X = empty list [ ]

3: while free worker do

4: θ = get new one(T ) . Return a new configuration for training.

5: check trigger = get check trigger()

6: for every check point p ∈ C do

7: learning curve γ = update lc(θ, p) . Update the learning curve until meeting the checkpoint p.

8: send to supervisor(γ)

9: stop training trigger = receive from supervisor()

10: z = get final performance(θ)

11: send to supervisor(γ, z)

12: for supervisor worker do

13: for γ = receive from worker() do

14: trigger = = check(Y, γ, d, s) . This function refers to Algorithm 2.

15: send to worker(trigger)

16: for γ, z = receive from worker() do

17: X,Z = update(X,Z, γ, z)

18: check trigger = [length(Z) > n ∗ r]

3.4.2 Combination with other selection algorithms

Another potential improvement of LCM is the combination with other hyperparameter selection algorithms.

As shown in Figure 3.1, selection algorithms and early stopping algorithms are two independent categories, which

are both necessary in hyperparameter tuning. In the above experiments, we only considered the combination of

LCM and random search. Nevertheless, besides this basic selection algorithm, random search, there are other
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advanced selection algorithms, such as Bayesian Optimization. Some of them have good performances and are

applied widely. In consideration of the complexity of hyperparameter tuning and the uniqueness of every tuning

problem, we cannot predict the performance of such combinations. Further implementation and related experi-

ments are required.

3.4.3 Ultraparameters

As hyperparameters are required for parameter tuning in machine learning training, there are also some

parameters which are needed in hyperparameter tuning algorithms, ’ultraparameters’. Considering our little un-

derstanding of hyperparameters because of their complicated and sensitive properties, we know even less about

ultraparameters. In the CIFAR10 group, setting the number of configurations to be 500 causes some unexpected

instability. Somtimes, LCM gets worse results with the increase of computing time. Since hyperparameters and

underlying networks are complex, number of trials in the accumulation stage becomes relatively small. It is also

possible that initial picks are in a bad comaparison candidates and consequently, LCM is led in the wrong direction.

How to decrease the number and complexity of such ultraparameters and even implementing so called auto-tuning

are critial for hyperparameter tuning. Otherwise, we always need new algorithm to tune the parameters generated

by previous tuning algorithms.

3.4.4 Some Inconclusive Work

After initial implementations of LCM came several ’improved’ versions of LCM. Mixed LCM takes com-

puting time into consideration. Instead of comparing the rank percentage of predicted performance, Mixed LCM

compares a linear combination of relative time cost and the rank percentage of predicted performance. Modified

LCM tries to modify the method of getting the predicted performance, where distances are normalized and pre-

dicted performance is the dot product of normalized distances and corresponding final performances. Adaptive

LCM is a combination of LCM and an algorithm for changing learning rates during the training based on learning

curves.

Then we repeat the fixed-computing-time experiments in the MNIST group. The results are shown in Figure

3.6. None of those revised algorithms implies any potential improvement. Even compared with random search,

Modified LCM and Adaptive LCM perform worse. Mixed LCM shows stable outperformance if compared with

random search. Considering the negligible differences between needed computing time for different configura-

tions, we need to conduct more complicated experiments to examine potential validity of Mixed LCM.

12



(a) Loss Results

(b) Accuracy Results

Figure 3.6: Experiment Results
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Population Based Training with MagmaDNN

4.1 Natural Models and Bottlenecks

The recent history of scientific innovation is rich with examples of imaginative minds using nature as in-

spiration for exploration and discovery. Evolutionary optimization algorithms use natural models to inspire a

particular approach to traversing a search space in order to minimize some objective function. One classic case

is the Particle Swarm Optimization algorithm, inspired by the swarming behavior of bees [1]. These evolutionary

optimization algorithms, such as the hyperparameter tuning algorithm Population Based Training (PBT), since

they are often modeling several distinct actors operating concurrently through time, are particularly amenable to

parallel implementations [3]. PBT’s current most popular implementation, that of its originators at UC Berkeley,

while suitable for consumer scale neural network applications, cannot efficiently utilize the thousands or tens of

thousands of compute nodes on a supercomputer, such as ORNL’s Summit. The scalability bottleneck encoun-

tered in this otherwise effective hyperparameter optimization algorithm is the impetus behind implementing PBT

from the ground up using MagmaDNN, the developers of which have had supercomputer scale, distributed, high

performance computing at front of mind since its inception.

4.2 Learning Rate and Learning Rate Decay

As it relates to PBT, the current work used the optimization of learning rate and learning rate decay as

a case study of the malleability of MagmaDNN’s hyperparameter tuning functionality. This particular class of

hyperparameters was chosen as a focus due to an apparent consensus in the literature that, holding network archi-

tecture constant (a necessity due to an inherent trade-off made by PBT discussed further below), optimizing the

learning rate made the greatest contribution to neural network convergence [1][3]. While the phrase ”learning rate”

is suggestive, it will require some deeper clarification in order to fully explain the experimental results obtained.

In all the neural network training trials conducted in the PBT experiments, stochastic gradient descent

(SGD) was used to traverse the parameter space of network weights in order to find the weight configuration

that would minimize training error. SGD is an extension of classical gradient descent optimization wherein a

differentiable convex space, meaning a differentiable space with a single minimum, is traversed in the direction of

steepest descent. The iterative gradient descent process is captured in the following equation,

xn+1 = xn − γn∇F (xn),
where we see that xn+1 the n + 1th position in the parameter space is determined by xn, minus the gradient ∇,

scaled by γn, of the objective function F evaluated at xn. The γn term is called the step size since it determines

how far through the parameter space each iterative step travels [6].

The SGD process is similar, except that the equation’s right hand side is perturbed by some, typically small,

14



additional stochastic epsilon vector. This extra randomness makes SGD suitable for non-convex optimization, like

that done in neural network training, since the extra epsilon term as seen here,

xn+1 = xn − γn∇F (xn) + εn,
can prevent the search from settling into a local minimum. The γn term of the SGD equation, in the context of

neural networks, is known as the learning rate [1]. It is always non-negative, since otherwise movement would

occur in the wrong direction, non-zero, since otherwise no movement would occur at all, and less than one, since

otherwise the process would diverge for a generic objective function.

Intuitively, one may see that a constant learning rate, even between zero and one, may still result in conver-

gence problems. For illustration consider the scenario where you are visiting a friend across the country at their

new apartment in Los Angeles or New York. First you would move at jet speed, then train speed, then taxi speed,

and finally walking speed. If you never got out of the cab you would just drive back and forth in front of the

apartment, but if you did not travel quickly enough at the beginning of your trip, you may never make it to your

friend’s city at all. The intuition behind this illustration is borne out in the existing research on neural network

learning rate. The generally optimal behavior is to have a learning rate which decays over time, with too high a

learning rate associated with oscillations in the network weights and too low with a network converging too slowly

[1]. The question then is how to determine γn+1 given γn. A common scheme is to apply a constant decay factor

α, however indexing α by the iteration number like so,

γn+1 = αnγn,

will indicate that some of the PBT experiments do update the α value at different times of the network training.

Indeed, these values, the learning rate γ and the decay rate α, are the hyperparameters that were optimized in the

experiments documented below.

4.3 Algorithm and Implementation

The principle behind the PBT algorithm is relatively straightforward. A population of neural networks be-

gins training with randomized hyperparameters and network weights. At a determined point during the training, the

fitness of the networks is ranked according to some metric. Then the least fit networks copy the hyperparameters

and network weights from the most fit networks. This is termed the exploit phase. Next, the copied hyperpa-

rameters are perturbed according to some distribution. This is what the PBT authors call the explore phase. This

process of train, exploit, explore is then repeated until desired convergence or some other predetermined stopping

condition [3]. The original PBT developers’ psuedocode of the algorithm can be found in the appendix.

In the particular implementation developed for this project, the population of neural networks, termed

”workers,” was made up of instances of MagmaDNN training on the MNIST handwritten digit dataset. The

network structures were held constant across experiments. These network architectures consisted of three fully

connected layers with bias, along with sigmoid activation functions. The fitness ranking metric used in all PBT

experiments was training accuracy. While some preliminary experiments were completed (analyzed below) using

file input/ouput for the communication of accuracies, network weights, and hyperparameter values, the final im-

plementation uses MPI calls to send and receive data between workers. The stopping condition in all experiments

was that training would cease after five epochs, i.e. five full training cycles on the entire dataset.

MagmaDNN, written in C++, is an open source project, and accordingly, its source code was available
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for free use and extension. To implement PBT using MagmaDNN, the proprietary neural network class was

customized to include functionality necessary for the PBT algorithm, in particular inter-worker communication,

and evolutionary hyperparameter perturbation. A walkthrough of some of this custom network’s code will clarify

some implementation details. Focus will be given to modifications made to the proprietary code. Readers interested

in the original code can find it at https://bitbucket.org/icl/magmadnn.

Before training begins each network samples their hyperparameters from a given distribution.

After a partial training period, the length of which is determined by the evolution pace variable, each network

enters the exploit phase.

Inside the exploit if statement, accuracies are communicated between workers using MPI Allgather, which updates

a vector of doubles for each network instance, which contains in its slot with index n the accuracy of the worker

with MPI rank n.

Still inside the exploit if statement, worker fitness is ranked using the worker accuracies vector. In this implemen-

tation, the most fit quartile, via MPI Send calls, sends its weights and hyperparameters to the least fit quartile;

most fit worker to least fit worker, second most fit to second least fit, and so on.

Similarly, still inside the exploit if statement, the least fit quartile updates its network weights and hyperparameters

via MPI Recv calls. Note that the unfit worker else if statement is still open.
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Inside the unfit worker else if statement, meaning if the worker has copied weights and hyperparameters from a

fitter worker, the hyperparameter space is explored via a perturbation of the copied hyperparameters chosen from

a given distribution.

The explore phase ends by leaving the unfit worker else if statement. The exploit if statement ends, returning the

network to its training for loop. During these exits, the optimizer’s learning rate variable is updated, and the

exploit flag is reset until another partial training period completes.

As noted in section 4.2, PBT makes a trade-off between which hyperparameters it can optimize and the

speed of the algorithm. In particular, since PBT completes in a single training regiment, it cannot optimize net-

work architecture. Because the hyperparameters are updating dynamically, the workers that altered their network

structure mid-training would almost certainly be the least fit in the next ranking, as their new network components

would not have enough time to sufficiently train between rankings. As such, the initial network structure would

be selected as the most fit, providing no new information on the network architecture hyperparameters. This was

a primary contributing factor towards the design of the experiments which document the optimization of learning

rate and decay.
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4.4 Analysis and Results

4.4.1 Dynamic Learning Rate

The following graphs show the results obtained from a preliminary experiment, Experiment 0, comparing

static to dynamic learning rate. Using MagmaDNN, a network with three fully connected layers was trained on

MNIST with stochastic gradient descent. Batch size was constant across trials, at 32 per iteration. The random

initial weights of each network were also held constant across trials. Graph A (top) plots learning rate against

number of training iterations. It shows a gray line, a trial with static learning rate of 0.0016, while the orange

lines plot trials with decaying learning rate with variable initial values. The decay rate was .95, applied every 100

iterations. Graph B (bottom) shows that all of the dynamic trials achieved greater accuracy more quickly. The

Y-axis is accuracy, while the X-axis is number of training iterations. These plots affirm, in our case, the benefit of

dynamic learning rate.

Experiment 0 - Graph A (top), Graph B (bottom)
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Graph C maps the final accuracy of the dynamic trials against their initial learning rate values. The greatest

final accuracy is steadily approached from below, as initial learning rate increases. The best final accuracy is

achieved with an initial learning rate value of 0.01, and then for greater initial learning rate values, the final

accuracy exhibits irregular behavior. These results confirm that lower learning rates, while slowing convergence,

contribute to stability, while learning rates that are too high result in oscillations and unpredictability.

Experiment 0 - Graph C

4.4.2 Adaptive Learning Rate

Experiment 1 and Experiment 2 were conducted using PBT to find the optimal schedule for the learning

rate (LR) of a network training with the specifications in Table 4.1.

Dataset MNIST

Layers 3 Dense

Activation Sigmoid

Optimizer SGD

Epochs 5

Batch Size 32

Table 4.1: Experiments 1 and 2 - Network Specifications
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Experiment 1

LR Sampling Distribution Uniform Random between .0001 and .2

LR Decay Ratio Sampling Distribution Uniform Random between .99 and 1

LR Decay Pace Every 20 iterations

Evolution Pace Every 120 iterations

LR Perturbation Distribution 1.2 and .8 equally likely

LR Decay Ratio Perturbation Distribution .99 and 1.01 equally likely

Table 4.2: Experiment 1 - PBT Settings

Experiment 1 - Graph D (top), Graph E (bottom)

Graph D plots the learning rates across training iterations of a population of ten workers, instances of

MagmaDNN, while Graph E plots the same population’s learning rate decay factor. The thick lines signify the

workers in the most fit quartile, in this case the three networks with the highest training accuracy. The most fit

worker’s hyperparameter schedule is plotted with a thick bold line, while the second and third performers lines

are dotted. Graph D clearly shows that the many of the random initial values for the population’s learning rates

quickly drop, before the end of the first training epoch, culling the workers with learning rates that are too high.

The behavior of the blue and green workers in Graph D demonstrates a similar culling behavior on a longer time

scale, but with the green worker’s learning rate sinking too low. By the final training epoch the orange and red

workers are delineating an optimal channel for the learning rate between .01 and .0001, with most other members

of the population oscillating between them. In both graphs we can see that while the grey worker was the top

performer for most of the first epoch, the orange worker soon becomes and remains the most fit. This is likely

due to the slightly more severe decay rate of the grey worker. Since the decay behaves exponentially (note that

Graph D is log scale along the y-axis), when the decay factor sinks below a value on the order of .99, the worker’s

learning rate will tend to be sent too low, too quickly.
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Experiment 2

LR Sampling Distribution Uniform Random between .0001 and .2

LR Decay Ratio Sampling Distribution Uniform Random between .98 and 1.01

LR Decay Pace Every 20 iterations

Evolution Pace Every 120 iterations

LR Perturbation Distribution No perturbation

LR Decay Ratio Perturbation Distribution Uniform Random between .9 and 1.1

Table 4.3: Experiment 2 - PBT Settings

Experiment 2 - Graph F (top), Graph G (bottom)

Experiment 2 was an ablation experiment wherein the learning rate was not allowed to evolve directly, rather

only through its decay ratio. Considering the learning rate as one dimension in the hyperparameter space, while

the least fit workers did copy the learning rates of the most fit, the workers did not explore the dimension in the

sense laid out section 4.3. This idea was inspired by the classical optimal control example of an inverted pendulum

on a cart. In one experiment the pendulum’s output state is a measure of the angle of the pendulum, in another it

is only allowed to output the angular velocity of the pendulum. It can be shown that under generic circumstances,

with control over the velocity of the cart, both experiments result in stability. Similarly, this ablation experiment

results in the learning rates settling into the same feasible channel between .01 and .0001 as Experiment 1. While

there is more variablility in the learning rates of the first few training epochs, the aforementioned culling behavior

results in convergence of the hyperparameters to value ranges nearly identical to Experiment 1.
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Conclusions and Future Work

The experimental results of this research project show that dynamic and adaptive learning rate optimiza-

tion, such as that deployed in our MagmaDNN PBT implementation, improves the convergence of neural networks.

However, the fact that PBT inherently cannot without significant modification effectively optimize network struc-

ture can serve as an impetus for further research into alternative hyperparameter optimization schemes such as the

random accretative network structure optimizer being developed by Massimiliano Pasini at ORNL. Furthermore

the project demonstrated that early stopping hyperparameter tuning algorithms, such as LCM, can compete with

standard benchmarks like Random Search.

Another potentially fruitful avenue for future developments may be the implementation of more custom

MagmaDNN classes to explore the tuning of convolutional neural network hyperparameters. As well, implement-

ing LCM using the MagmaDNN framework would likely improve its performance and scalability. Finally, the

completion of an implementation of MagmaDNN PBT utilizing OpenDIEL’s distributed workflow system, would

allow the project to be scaled to supercomputer applications, like the electron microscopy research that originally

motivated the direction of much of the work done for this project.
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