License Plate Matching Using Neural Networks

Kelvyn SOSOO (GMU) David OUYANG (CSUST)
Mengjun WANG (CSUST) Mentors: Lee HAN (UTK) \& Kwai WONG (UTK)

Background

- License Plate Recognition (LPR) technology is used to gather vehicle location data
- Location Data includes instances of Amber Alerts, Toll Roads Speed/Travel Time, etc.
- The License Plate Matching (LPM) method incorporated includes a 97% match rate of vehicles, and a 60\% read accuracy
- Programs Used: Python, Matlab

How It Works

Procedure

Image Processing

Step 1 : Manipulation of Data

	A	B	
1	$2010-05-27$	$06: 08: 15.200000$	
2	$2010-05-27$	$06: 57: 52.700000$	
3	$2010-05-27$	$08: 35: 40.520000$	
4	$2010-05-27$	$09: 04: 17.330000$	
5	$2010-05-27$	$09: 13: 15.730000$	
6	$2010-05-27$	$12: 30: 27.910000$	
7	$2010-05-27$	$14: 52: 51.240000$	
8	$2010-05-27$	$14: 59: 15.240000$	
9	$2010-05-27$	$15: 00: 35.960000$	
10	$2010-05-27$	$15: 01: 10.170000$	
11	$2010-05-27$	$15: 12: 58.100000$	
12	$2010-05-27$	$15: 13: 56.770000$	
13	$2010-05-27$	$15: 16: 17.660000$	
14	$2010-05-27$	$15: 40: 27.030000$	
15	$2010-05-27$	$15: 56: 24.700000$	
16			

Step 2: Image binarization
ret, imgf = cv2. threshold(img, 0, 255, cv2. THRESH_BINARY+cv2. THRESH_OTSU)
fig. add_subplot ($2,2,1$)
plt. imshow(imgf, cmap ='gray')
cv2. imwrite("thresh\{\}.jpg". format (i), imgf)
P1 = cv2. imread("thresh\{\}.jpg". format (i))
grayscaleimg = cv2. cvtColor(P1, cv2.COLOR_BGR2GRAY)

Original

Midterm

Image enhancement

Final

Step 3 : Read the Number of Black Pixels Vertically

$[176,176,176,176,176,176,176,176,176,176,176$, $176,176,176,176,176,176,176,176,176,176,176$, $176,176,176,176,176,176,176,176,176,176,176$, $176,176,176,176,176,176,176,168,168,168,166$, $170,166,168,108,51,47,49,44,47,46,47,54,51,52$, $47,43,45,44,43,43,45,47,58,67,77,81,80,76,69$, $63,60,64,64,60,64,68,64,67,61,66,57,60,55,62$, $68,85,84,88,86,73,46,45,46,58,61,61,59,62,69$, $61,52,68,79,76,74,98,131,135,176,176,176,176$, $176,176,176,176,176,176,176,176,176,176,176$, $176,176,176,176,176,176,176,176,176,176,176$, $176,176,176,176,176,176,176,176,176,176,176$, $176,176,176,176,176,176,176,176,176,176,176]$
np.argmin(row_nz[0 : floor(len(row_nz)/2)]) == 59 np.argmin(row_nz[floor(len(row_nz)/2) :]) == 95

$$
\begin{aligned}
& \text { row_nz }(59)=43 \\
& \text { row_nz }(95)=45
\end{aligned}
$$

Two key points coordinate: $(59,43)(95,45)$

Step 4 : Read the Number of White Pixels Horizontally

KEY POINT (CUT POINT) : [33, 40, 54, 72, 86, 104, 120, 150]

1	H	2	1	2	5	2
1.jpg	2.jpg	${ }_{\text {3 }} / \mathrm{j}$ g	4,ipg	s,jpg	6,jpg	

Outcome

P	P	\boldsymbol{P}	P	p	B	P
Char6682.jpg	Char6902.jpg	Char7001.jpg	Char7171.jpg	Char7262.jpg	Char7311.jpg	Char7451.jpg
p	p		p	P	p	p
Char10361.jpg	Char10871.jpg	Char10881.jpg	Char13111.jpg	Char13301.jpg	Char13364.jpg	Char14403.jpg
P	P.	P	P	\mathbf{P}	P	p
Char19341.jpg	Char22191.jpg	Char22283.jpg	Char22403.jpg	Char22651.jpg	Char22891.jpg	Char22903.jpg
P	P	P	P	P	p	P
Char25351.jpg	Char27171.jpg	Char27602.jpg	Char27931.jpg	Char27971.jpg	Char28862.jpg	Char29171.jpg
\mathbf{P}	P	$\stackrel{N}{p}$	p	P	P	P
Char30932.jpg	Char31101.jpg	Char31774.jpg	Char31811.jpg	Char34391.jpg	Char34576.jpg	Char35153.jpg

E	E	E	E	E	E
Char2271.jpg	Char2544.jpg	Char2582.jpg	Char2691.jpg	Char2981.jpg	Char2982.jpg
E	E	E	E	E	E
Char11941.jpg	Char12431.jpg	Char12481.jpg	Char12741.jpg	Char12771.jpg	Char13481.jpg
E	E	E	E	E	E
Char16851.jpg	Char17021.jpg	Char17531.jpg	Char18171.jpg	Char18451.jpg	Char18521.jpg
E	E	E	E	E	E
Char20183.jpg	Char20251.jpg	Char20391.jpg	Char21081.jpg	Char21292.jpg	Char21861.jpg
E	E	E	E	E	E
Char25121.jpg	Char25231.jpg	Char25391.jpg	Char25411.jpg	Char25601.jpg	Char26263.jpg
E	E	E	\mathbf{E}	E	E
Char31391.jpg	Char31392.jpg	Char31411.jpg	Char32242.jpg	Char32341.jpg	Char32391.jpg

$\sum_{3,1 \mathrm{pa}}^{2}$

Supervised Learning: Neural Network

- Previous slide presented the outcome of Character Segmentation
- It is very time consuming to transfer the characters to the proper label/category
- Instead of spending countless hours manually moving files, Data Augmentation was implemented
- Categories included A-Z and 0-9

Attempts

- Two different training datasets were tested: Grayscale and Binary Images

Midterm Performance

- After four epochs, the model was able to reach a validation accuracy of 95.18\%

Final Performance

Train on 31723 samples, validate on 5599 samples
Epoch $1 / 3$
$31723 / 31723$ [========================]-15355ms/sample-105s:1.1023-acc: 0.6947-val_105s:0.1719-Val_acc: 0. 9489
Epoch 2/3
 9791
Epoch 3/3
31723/31723 [=z====z==================]-17756ms/sample-loss: 0.1232-acc: 0.9608-val_105s: 0.0580-val_acc: 0. 9812

- After three epochs, the model was able to reach a validation accuracy of 98.12\%

Model Usage

- Characters from seperate folders/ license are identified
- Stored as strings in csv file

Plate Matching

distance L

TMME CONSTRAINT

$$
\frac{1}{\operatorname{mar}} \leq v(j)-v(i) \leq \frac{1}{\min }
$$

Goal: To judge whether different plate characters are from the same car

Self-learning

LPR1
Possible
match
set

1. Use the time constraints to find all possible plates matches.
2. Put all these selected plates into a set named candidate set ' S ', every string in the set named S(i).
3. Get several pairs of plates.

Look for the smallest edit distance required to transform each other,
4. Choose the one which

The candidate set
shows up firstly.

Character-transition Matrix

For example, there are two plate strings.
A8CI213 \& ABC123

The edit distance between two different license plates and the edit paths on grids.

A-A

$$
C-C
$$

$$
1-I
$$

$$
2-2
$$

$$
3-3
$$

(1) deletion

(1) Find every pair of possible match.
(2) Calculate the edit distance path.
(3) Find all the
(4) Calculate the

Character-transition matrix.
(5) Iterating and updating the

Calculate the
(3)
(4)

matrix until it is not change. , matrix until it is not change.

-

Association Matrix

The initial character-transition matrix.

Self-learning:
 By iterating to ce sulate the

transforming probability

between different characters.
$p(b \mid a)=\rho_{a b} / \rho_{a}$
is the value of every grid in the Character-transition matrix.

Character-transition matrix.

Obtain an
the conditional probability.
by calculating
Dy calcuratigy

$$
p(b \mid a)=\rho_{\mathrm{a} b} / \rho_{\mathrm{a}}
$$

> is the sum of every row in the

Final Association Matrix

This is a 37 by 37 matrix. 0-9 \& A-Z \& SPACE
The x axis is LPR 1 reading.
The y axis is LPR 2 reading.
The value of every grid is the conditional probability of two characters being misread at two sites.

Matching

For instance, there are two pairs of license plates:

44S5H2 4455HZ
$4415 \mathrm{HZ} \quad 4455 \mathrm{HZ}$

$$
d(x \rightarrow y)=\min \left\{\sum_{k=0}^{n} \log \left(\frac{1}{p\left(i_{k}, j k\right)}\right)\right\}
$$

$d(x-y)$ is the cost of transforming x to y.

x_{i}	y_{j}	$p\left(y_{j} \mid x_{i}\right)$	$\log \left(\frac{1}{p\left(y_{j} \mid x_{1}\right)}\right)$
"4"	"4"	0.885	0.122
"4"	"4"	0.885	0.122
"S"	"5"	0.280	1.273
"5"	"5"	0.914	0.090
"H"	"H"	0.937	0.065
"2"	"Z"	0.055	2.906
$\operatorname{GED}(x \rightarrow y)=\sum \log \left(\frac{1}{p\left(y_{j} \mid x_{1}\right)}\right)=$			4.579
z_{i}	y_{j}	$p\left(y_{j} \mid z_{i}\right)$	$\log \left(\frac{1}{p\left(y, z_{4}\right)}\right)$
"4"	"4"	0.885	0.122
"4"	"4"	0.885	0.122
"1"	"5"	0.001	6.535
"5"	"5"	0.914	0.090
"H"	"H"	0.937	0.065
"Z"	"Z"	0.829	0.188
$\operatorname{GED}(z \rightarrow y)=\sum \log \left(\frac{1}{p\left(y_{j} \mid z_{i}\right)}\right)=$			7.122

The minimum one is the match one.

Matching with FuzzyWuzzy

- Based on Fuzzy Logic / Levenshtein Distance formula
- Simple and fast way of string matching

Future Works

- Improving efficiency of MATLAB matching code
- Improve character segmentation
- Find fully autonomous implementation of license plate matching

THANKS FOR LISTENING, ANY QUESTIONS?

