License Plate Matching Using

Neural Networks

Kelvyn SOSOO (GMU)David OUYANG (CSUST)Mengjun WANG (CSUST)Mentors:Lee HAN (UTK) & Kwai WONG (UTK)

Overview

- License Plate Recognition (LPR) technology is used to gather vehicle location data
- Location Data includes instances of Amber Alerts, Toll Roads Speed/Travel Time, etc.
- The License Plate Matching (LPM) method incorporated includes a 97% match rate of vehicles, and a 60% read accuracy
- Programs Used: Python, Matlab

GOAL: Raise the 60% by using Image Processing. Find a new measure to matching plate by using supervised learning.

How It Works

Procedure

Screen the License Plate images

Image Processing to segment every Character

Develop New method of matching

Neural network training

Image Processing Step 1 : Image binarization

Method: cv2.THRESH_OTSU

thresh4

Step 2 : Read the number of black pixels in the y direction

np.argmin(row_nz[0 : floor(len(row_nz)/2)]) == 59 row_nz(59) = 43 np.argmin(row_nz[floor(len(row_nz)/2) :]) == 95 row_nz(95) = 45

(59, 43) (95,45)

Step 3 : Read the number of white pixels in the x direction

KEY POINT & CUT POINT : [33, 40, 54, 72, 86, 104, 120, 150]

Final Outcome

Supervised Learning: Neural Network

- Previous slide presented the outcome of Character Segmentation
 It is very time consuming to transfer the characters to the proper label/category
- Instead of spending countless hours manually moving files, Data Augmentation was implemented
- Categories included A-Z and 0-9

Convolutional Neural Networks

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Performance

File Edit	View Insert Cell Kernel Widgets Help	Trusted Python 3 C
🖹 🕇 🛞 d	A I Run ■ C → Code	
	<pre>metrics=['accuracy'])</pre>	
	model fit(X y batch size 2) enorms (yelidation split-0.15) #number of samples to be passe	ad at a time
	model.fit(x,y, bacch_size=sz,epochs-4, variaacioh_spiic=0.is) #number of sumples to be pusse	
	<pre>model.save('64x3-CNN.model')</pre>	
	Using TensorFlow backend.	
	<pre>WARNING:tensorflow:From C:\Users\Kelvyn\Anaconda3\lib\site-packages\tensorflow\python\ops\res cate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a futur Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From C:\Users\Kelvyn\Anaconda3\lib\site-packages\tensorflow\python\keras\: out (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`. Train on 31722 samples, validate on 5599 samples Epoch 1/4 31722/31722 [========] - 1255 4ms/sample - loss: 1.7344 - acc: 0.5150 8328 Epoch 2/4</pre>	esource_variable_ops.py:435: colo ure version. \layers\core.py:143: calling drop a future version. - val_loss: 0.6502 - val_acc: 0.
	31722/31722 [=======] - 121s 4ms/sample - loss: 0.5751 - acc: 0.8322 9198 Epoch 3/4 31722/31722 [=======] - 120s 4ms/sample - loss: 0.3669 - acc: 0.8894 9412	- val_loss: 0.3054 - val_acc: 0. - val_loss: 0.2288 - val_acc: 0.

• After four epochs, the model was able to reach a validation accuracy of 95.18%

Next Step

- Think of a way to store License Plates with this method
- Find way to string together characters for Matching step

Plate Matching

Ex: the tag of a license plate is **4455HZ** LPR 1 reads the plate as **44S5H2**, LPR2 is **4455HZ**

Constraints

- 1. The travel time of LPR1 to LPR2
- 2. The ED of plate 1 change to plate 2
- 3. The conditional probabilities of character transition

Less ED, higher probability, in the time period

Goal: To judge whether Different plate characters are from the same car

Edit Distance Operation

$$d(x \rightarrow y) = \min\{d(i-1, j-1) + \gamma(x_i \rightarrow y_j), d(i-1, j) + \gamma(x_i \rightarrow \varepsilon), d(i, j-1) + \gamma(\varepsilon \rightarrow y_j)\}$$

Association Probability

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{\sum_t p(x,y|t)p(t)}{\sum_{y,t} p(x,y|t)p(t)}$$

Self-learning Matching

C(M) represents calculate association matrix from a set of matches M

$$p(y|x) = \sum_t p(y|t) p(t|x)$$

k = k + 1;
 Mk = M(Ck-1);
 Ck = C(Mk);
 Stop if Ck - Ck-1 < ε.

Research Plan

1.Work on ED algorithm, self-learning algorithm of matching

2.Work on the matching part and weight function by python

3.Calibrate the parameters and validate them

Done

1.Read papers

2.Determine the project frame

Next step

Learn matlab and transform the matlab code into python code

Challenges

Challenges Already Faced:

- Sufficient Training Data
- Character Cutting Details
- Clearer Images
- Handling of Similar Characters

Foreseeable Challenges:

- Adapting Matlab Code
- Meshing Network and Matching

THANKS FOR LISTENING, ANY QUESTIONS?