

Project Overview

Matrix Algebra on GPU and Multicore Architectures (MAG is a dense linear algebra library for heterogeneous architect [1]. It was originally designed to run with Nvidia G Portability was later extended to the AMD GPU. This me significant portions of MAGMA are written in CUDA, which later translated to HIP. Intel has released a multi-archited programming model called oneAPI, which claims portability GPUs, CPUs, FPGAs, and more [2]. We want to trans MAGMA to be compatible with oneAPI to extend its portabi

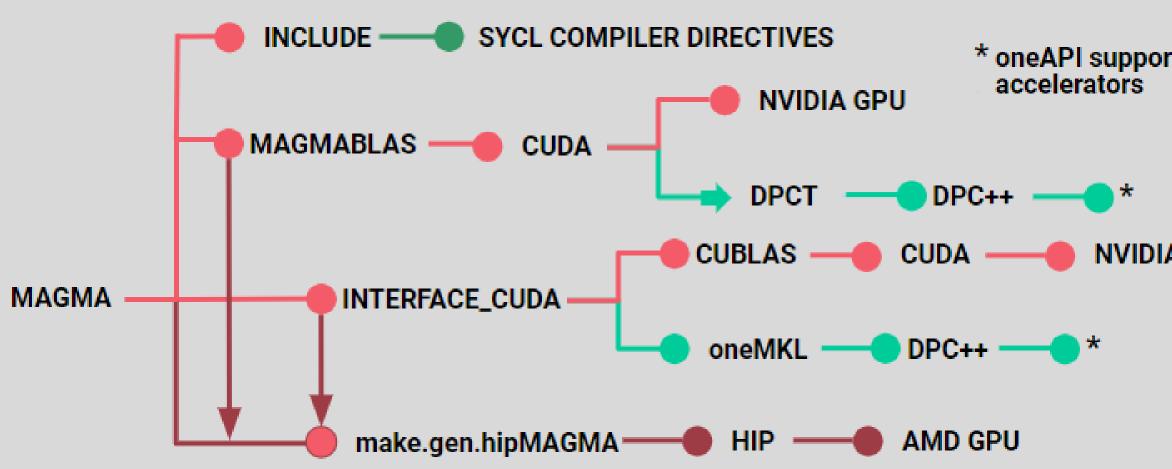


Figure 1: Structure of MAGMA with Intel GPU support

Data Parallel C++ (DPC++), the DPC++ Compatibility Tool (DF and the oneAPI Math Kernel (oneMKL) are software tools w oneAPI. Figure 1 depicts where these tools fit into translation process of MAGMA. Compiler directives, show green, must be implemented to complete the transla process.

Research Questions

- How well does the DPCT translate CUDA code to SYCL code
- What are the common translation errors?
- What are the system requirements?
- Is SYCL portable to Nvidia and AMD GPUs?
- Can this tool be used to translate MAGMA?
- What is the performance of SYCL on multicore CPUs?
- How does the performance of SYCL on Nvidia and AMD (compare to CUDA and HIP on their respective GPUs?
- How does the performance of SYCL on the Intel GPU compare to CUDA and HIP on their respective GPUs?

Methodology

- Configure system for running SYCL code and create documentation of the installment process
- 2. Translate different structures of CUDA files to SYCL with **DPCT for correctness**
- Document translation process and errors 3.
- Configure system to run SYCL code on Nvidia GPU
- Test performance of sgemm code 5.
- Repeat steps 1-5 on Innovative Computing Lab (ICL) acco 6.
- Begin MAGMA translation process of CUDA to SYCL

Extending MAGMA Portability with oneAPI

Anna Fortenberry¹, Dr. Kwai Wong², Dr. Stan Tomov² ¹University of North Texas ²University of Tennessee at Knoxville

	Software Tools		
GMA)	oneAPI	DPC++	S
ctures GPUs. heans h was cture ity to hslate oility.	programming mode that delivers common develope experience acros accelerator archite	or Direct programming el language of oneAPI. a Comprised of C++, er SYCL, and DPC++ ss language extensions; c- compiler implemen- tation of SYCL [3], [4]	language code re hardware enables of data
orted	DPCT	CUDA	on
DIA GPU	CUDA code to DPC+	te Parallel computing -+ platform and pro- gh gramming model for the Nvidia GPU [6]	library optimized
	,		
	DPC++ LLVM Nvidia	DPC++ LLVM AMD<i>I</i>- Builds DPC++ (LLVM-	Grants
PCT),	•	th based) compiler with HIP AMD support [8]	powerful
vithin		CPU Performan	ce
o the wn in	2000		
lation	1500		
	s 1000		
ode?	500		
	0 1024 204	48 3072 4096 5120 6144 N	7168 819
GPUs	Figure 2: S	SGEMM Performance on AN 64-Core Processor @ 2.25G	
	Figures 2 and 3 compare a SGEMM code translated to DPC++ and SGEMM from MKL.		
	2000 ———		
	1500		
	s 1000		
ר	500		
	0 1024 204	48 3072 4096 5120 6144	7168 819
count	Figure 3: SGEMN	N A Performance on Intel [®] Xeo 20-Core Processor @ 2.20G	

SYCL

chitecture to allow across euse targets; definitions parallel s [3], [4]

neMKL

math ng highly of parallel

Account

to access Nvidia and US

-	
 LAPACK DPC++	

from CUDA

92

-2698 V4

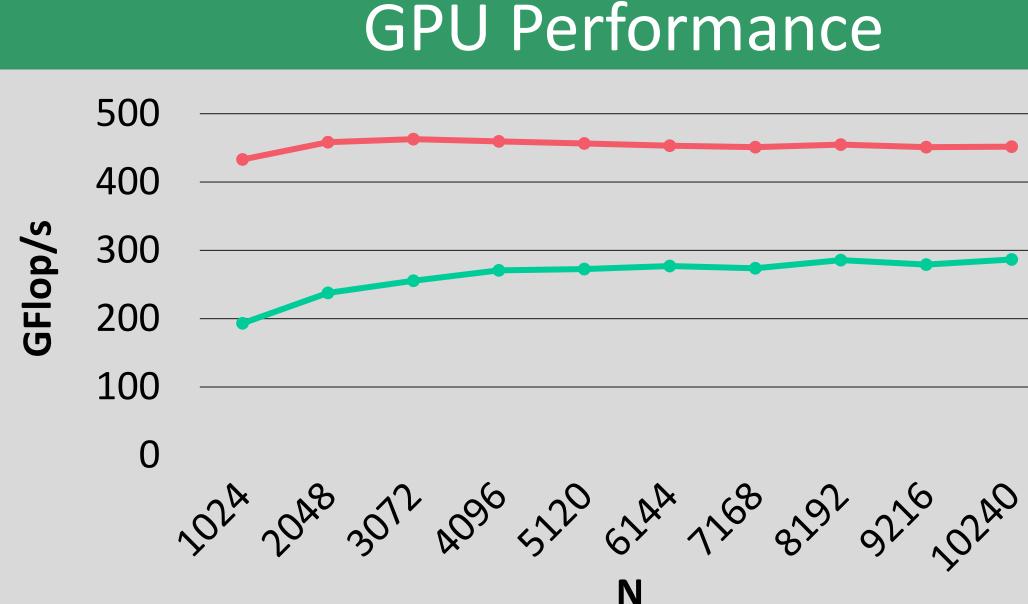


Figure 4: SGEMM Performance on Nvidia GeForce GTX 1650

To perform this test, an optimized single-precision general matrix multiplication (SGEMM) CUDA file was translated to DPC++ with the DPCT tool. It performs reasonably well on the Nvidia GPU. DPC++ achieves 45% of the original CUDA code performance when N equals 1024; this percentage increases to 63% when N equals 10240.

Conclusion and Future Directions

Intel's oneAPI proves to be a promising approach for parallel programming on heterogeneous systems. The DPCT tool can be used successfully for an initial port of CUDA code to DPC++. DPC++ code was successfully compiled and tested on Nvidia GPUs and multicore CPUs. Thus, the MAGMA port to DPC++ can be used to provide support for Intel GPUs, Nvidia GPUs, AMD GPUs, and multicore CPUs. DPC++ shows that large numerical libraries like MAGMA, originally written in CUDA to support Nvidia GPUs, can be easily translated to DPC++ to provide functional portability to different vendor GPUs, as well as multicore CPUs. Initial performance results show reasonable performance that can be further improved through hardwarespecific tuning.

Acknowledgements

We would like to extend a special thanks to the National Science Foundation for funding this project through the RECSEM REU program hosted at the University of Tennessee at Knoxville.

References

Tomov, S., Nath, R., Ltaief, H. and Dongarra, J., 2010. De
Solvers for Multicore with {GPU} Accelerators In: Proce
IPDPS'10. Atlanta: IEEE Computer Society, pp.1-8.
oneAPI. Intel. <u>oneAPI Programming Model oneAPI</u>
DPC++. Intel. DPC++ — oneAPI Specification 1.1-rev-1 of
Data Paralell C++: the oneAPI Implementation of SYCL.
DPCT. Intel. Migrate CUDA* to DPC++ Code: Intel® DPC
CUDA. Nvidia. What Is CUDA NVIDIA Official Blog
oneMKL. Intel. Intel oneAPI Math Kernel Library (oneM

-CUDA

DPC++

ense Linear Algebra edings of the IEEE

documentation Intel. DPC++ ++ Compatibility Tool

8 Compiling SYCL* for Different GPUs. Intel. <u>Compiling SYCL with Different GPUs</u>