
Extending MAGMA Portability with oneAPI
Anna Fortenberry¹, Dr. Kwai Wong², Dr. Stan Tomov²

¹University of North Texas ²University of Tennessee at Knoxville

v

References

Acknowledgements

Conclusion and Future Directions

GPU Performance

CPU Performance

Software Tools

Methodology

Research Questions

Project Overview

1 Tomov, S., Nath, R., Ltaief, H. and Dongarra, J., 2010. Dense Linear Algebra
Solvers for Multicore with {GPU} Accelerators In: Proceedings of the IEEE
IPDPS'10. Atlanta: IEEE Computer Society, pp.1-8.

2 oneAPI. Intel. oneAPI Programming Model | oneAPI
3 DPC++. Intel. DPC++ — oneAPI Specification 1.1-rev-1 documentation
4 Data Paralell C++: the oneAPI Implementation of SYCL. Intel. DPC++
5 DPCT. Intel. Migrate CUDA* to DPC++ Code: Intel® DPC++ Compatibility Tool
6 CUDA. Nvidia. What Is CUDA | NVIDIA Official Blog
7 oneMKL. Intel. Intel oneAPI Math Kernel Library (oneMKL)
8 Compiling SYCL* for Different GPUs. Intel. Compiling SYCL with Different GPUs

We would like to extend a special thanks to the National
Science Foundation for funding this project through the
RECSEM REU program hosted at the University of Tennessee at
Knoxville.

Intel’s oneAPI proves to be a promising approach for parallel
programming on heterogeneous systems. The DPCT tool can be
used successfully for an initial port of CUDA code to DPC++.
DPC++ code was successfully compiled and tested on Nvidia
GPUs and multicore CPUs. Thus, the MAGMA port to DPC++ can
be used to provide support for Intel GPUs, Nvidia GPUs, AMD
GPUs, and multicore CPUs. DPC++ shows that large numerical
libraries like MAGMA, originally written in CUDA to support
Nvidia GPUs, can be easily translated to DPC++ to provide
functional portability to different vendor GPUs, as well as
multicore CPUs. Initial performance results show reasonable
performance that can be further improved through hardware-
specific tuning.

To perform this test, an optimized single-precision general
matrix multiplication (SGEMM) CUDA file was translated to
DPC++ with the DPCT tool. It performs reasonably well on the
Nvidia GPU. DPC++ achieves 45% of the original CUDA code
performance when N equals 1024; this percentage increases to
63% when N equals 10240.

0

100

200

300

400

500

G
Fl

o
p

/s

N

CUDA
DPC++

Figure 4: SGEMM Performance on Nvidia GeForce GTX 1650

0

500

1000

1500

2000

1024 2048 3072 4096 5120 6144 7168 8192

G
Fl

o
p

/s

N

LAPACK

DPC++

Figure 3: SGEMM Performance on Intel® Xeon® CPU E5-2698 V4
20-Core Processor @ 2.20GHz

Figures 2 and 3 compare a SGEMM code translated from CUDA
to DPC++ and SGEMM from MKL.

0

500

1000

1500

2000

1024 2048 3072 4096 5120 6144 7168 8192

G
Fl

o
p

/s

N

LAPACK

DPC++

Figure 2: SGEMM Performance on AMD EPYC 7742
64-Core Processor @ 2.25GHz

oneAPI

Open, multi-vendor
programming model
that delivers a
common developer
experience across
accelerator architec-
tures [2]

DPC++

Direct programming
language of oneAPI.
Comprised of C++,
SYCL, and DPC++
language extensions;
compiler implemen-
tation of SYCL [3], [4]

SYCL

Cross-architecture
language to allow
code reuse across
hardware targets;
enables definitions
of data parallel
functions [3], [4]

DPCT

Tool to translate
CUDA code to DPC++
code with high
accuracy [5]

CUDA

Parallel computing
platform and pro-
gramming model for
the Nvidia GPU [6]

oneMKL

Computing math
library of highly
optimized parallel
routines [7]

DPC++ LLVM Nvidia

Builds DPC++ (LLVM-
based) compiler with
CUDA support [8]

DPC++ LLVM AMD

Builds DPC++ (LLVM-
based) compiler with
HIP AMD support [8]

ICL Account

Grants access to
powerful Nvidia and
AMD GPUs

1. Configure system for running SYCL code and create
documentation of the installment process

2. Translate different structures of CUDA files to SYCL with
DPCT for correctness

3. Document translation process and errors
4. Configure system to run SYCL code on Nvidia GPU
5. Test performance of sgemm code
6. Repeat steps 1-5 on Innovative Computing Lab (ICL) account
7. Begin MAGMA translation process of CUDA to SYCL

• How well does the DPCT translate CUDA code to SYCL code?
• What are the common translation errors?
• What are the system requirements?
• Is SYCL portable to Nvidia and AMD GPUs?
• Can this tool be used to translate MAGMA?
• What is the performance of SYCL on multicore CPUs?
• How does the performance of SYCL on Nvidia and AMD GPUs

compare to CUDA and HIP on their respective GPUs?
• How does the performance of SYCL on the Intel GPU

compare to CUDA and HIP on their respective GPUs?

Figure 1: Structure of MAGMA with Intel GPU support

Matrix Algebra on GPU and Multicore Architectures (MAGMA)
is a dense linear algebra library for heterogeneous architectures
[1]. It was originally designed to run with Nvidia GPUs.
Portability was later extended to the AMD GPU. This means
significant portions of MAGMA are written in CUDA, which was
later translated to HIP. Intel has released a multi-architecture
programming model called oneAPI, which claims portability to
GPUs, CPUs, FPGAs, and more [2]. We want to translate
MAGMA to be compatible with oneAPI to extend its portability.

Data Parallel C++ (DPC++), the DPC++ Compatibility Tool (DPCT),
and the oneAPI Math Kernel (oneMKL) are software tools within
oneAPI. Figure 1 depicts where these tools fit into the
translation process of MAGMA. Compiler directives, shown in
green, must be implemented to complete the translation
process.

https://www.oneapi.io/
https://spec.oneapi.io/versions/latest/elements/dpcpp/source/index.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html#gs.68lo52
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html#gs.6bl5rr
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/compiling-sycl-with-different-gpus.html

