

Abstract

MagmaDNN is a neural network library in C++ aiming at optimizing towards heterogeneous architectures, i.e. multi-core CPUs and GPUs. Currently, no implementation of the multi-head attention layer, which is a core component of transformer models, is provided by MagmaDNN library, despite the popularity and significance of transformer models in various tasks including vision tasks such as medical segmentation [1, 2], image recognition [3], semantic segmentation [4], and natural language processing tasks such as machine translation [5].

To bridge the gap, we present an implementation of the multi-head attention layer in MagmaDNN framework. Our implementation improves the prediction loss by **20.41%** compared with Tensorflow implementation, despite consuming extra training time (epoch =1000, learning rate = 10^{-3} , batch size = 8, input size = $[3 \times 8 \times 8]$). Compared with PyTorch implementation, our method also outperforms it by a clear margin in terms of prediction loss.

Formulation

The multi-head attention can be formulated as follows:

$$\begin{split} \mathsf{MHA}(Q,K,V) &= [h_1,\ldots,h_n] W^O \\ h_i &= \mathsf{Attention}(QW_i^Q,KW_i^K,VW_i^V) \\ \mathsf{Attention}(Q,K,V) &= \mathsf{softmax}\left(\frac{QK^\top}{\alpha}\right) V \end{split}$$

where Q, K and V are the query, key and value matrices, α is a scaling parameter, and all the W's are learnable weights.

Figure 2. Multi-head attention flowchart

Attention Algorithm: Implementation in MagmaDNN

Wing-Lim Lau¹ Xiao-Yang Li²

¹The Chinese University of Hong Kong

²City University of Hong Kong

Results

(1)(2)(3)

We conduct pseudo training experiments to compare the average training speed of different implementations for one single batch input of size $[3 \times 4 \times 4]$, $[3 \times 8 \times 8]$, $[3 \times 16 \times 16]$, $[3 \times 32 \times 32]$ (epoch = 3000).

As shown in the figures 3, 4, 5 and 6, our multi-head attention layer has a faster training speed when the input size is $[3 \times 4 \times 4]$, $[3 \times 8 \times 8]$ or $[3 \times 16 \times 16]$, but has a slower training speed when the input size is $[3 \times 32 \times 32]$.

Figure 3. input size = $[3 \times 4 \times 4]$

Figure 5. input size = $[3 \times 16 \times 16]$

Figure 6. input size = $[3 \times 16 \times 16]$

To further compare the performance, we sampled 800 data (batch size = 8) from a uniform distribution $X \sim U[-1, 1]$ and trained all the models to predict all-zero masks for 1000 epochs. We demonstrate the best-epoch prediction losses of the three in Table 2.

Input Size	Ours (s)	Pytorch (s)	Tensorflow
$3 \times 4 \times 4$	448.6	854.4	845.4
$3 \times 8 \times 8$	583.0	854.5	841.6
$3 \times 16 \times 16$	937.5	858.2	850.9
$3 \times 32 \times 32$	1550.5	865.5	862.6

Table 1. Training time for 1000 epochs (#batch = 100, batch size = 8)

Input Size	Ours (10^{-4})	Pytorch (10^{-4})	Tensorflov
$3 \times 4 \times 4$	2.634	0.467	0.34
$3 \times 8 \times 8$	0.554	1.956	0.69
$3 \times 16 \times 16$	0.0565	5.523	3.63
$3 \times 32 \times 32$	0.0555	11.03	3.59

Table 2. Quantitative comparison on prediction loss, lower loss being better (\downarrow)

Implementation

 $w (10^{-4})$ 88

Initialization All options and configurations are initialized. The memory space required is allocated and initialized via tensor descriptors.

Forward pass Refer to section Formulation.

Backpropagation The trainable parameters of multi-head attention layer are the projection weights W_q , W_k , W_v and W_o . The gradient of attention output w.r.t. projection weights is given by $\frac{\partial out}{\partial W} =$ $\frac{\partial out}{\partial [\hat{Q},\hat{K},\hat{V}]} \times \frac{\partial [\hat{Q},\hat{K},\hat{V}]}{\partial [W_q,W_k,W_v]} = \frac{\partial out}{\partial [\hat{Q},\hat{K},\hat{V}]} \times \frac{\partial [\hat{Q},\hat{K},\hat{V}]}{\partial W}.$ We introduce two separate functions, mha_grad_data_device and mha_grad_data_device_weights, to calculate the two terms simultaneously.

Figure 7. Overview of multi-head attention implementation

Conclusion

Our contributions can be concluded in two aspects:

(1) We present an implementation of the multi-head attention layer in MagmaDNN framework, making the development of transformer architecture possible for MagmaDNN library.

(2) We compare the performance of our multi-head layer with Py-Torch's and TensorFlow's implementations. Compared with them, our layer outperforms them by a clear margin in the best-epoch prediction loss, despite reasonable extra training time for largescale data.

References

- [1] Y. Gao, M. Zhou, and D. N. Metaxas, "UTNet: A hybrid transformer architecture for medical image segmentation," CoRR, vol. abs/2107.00781, 2021.
- [2] Y. Gao, M. Zhou, D. Liu, Z. Yan, S. Zhang, and D. N. Metaxas, "A data-scalable transformer for medical image segmentation: Architecture, model efficiency, and benchmark," 2023.
- [3] Z. Shen, I. Bello, R. Vemulapalli, X. Jia, and C. Chen, "Global self-attention networks for image recognition," CoRR, vol. abs/2010.03019, 2020.
- [4] Z. Huang, X. Wang, Y. Wei, L. Huang, H. Shi, W. Liu, and T. S. Huang, "CCNet: Criss-cross attention for semantic segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 6896-6908, 2023.
- [5] J. Song, S. Kim, and S. Yoon, "AligNART: Non-autoregressive neural machine translation by jointly learning to estimate alignment and translate," in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021 (M. Moens, X. Huang, L. Specia, and S. W. Yih, eds.), pp. 1–14, Association for Computational Linguistics, 2021.