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• The spectral method of graph convolutional networks utilizes the convolution 
theorem by transferring the feature to the spectral domain, performing the 
convolution, and transforming it back into the spatial domain.

• This is a flowchart of the order of the spectral method. When given the 
adjacency matrix, feature vector, and arbitrary tensor of weights, this algorithm 
will perform the convolution and send its new feature vector into another layer 
or through to the loss function. 

• The adjacency matrix goes through a series of transformations. The degree 
matrix is calculated by created a calculating the degree of each node and 
forming a diagonal matrix of those values.

• Then, the calculation 𝐿 = 𝐼	 − 𝐷!"/$𝐴𝐷!"/$ is used to calculate the Laplacian 
matrix.

• From there, the Laplacian, feature, and weight matrices all get fed into the 
ChebNet function which calculates the filter matrix g = ∑%&'( 𝑤 𝑖 𝑇$ 𝐿 𝑥 .

• After this, the filter and feature matrix undergo a graph Fourier transform and 
convolution: X = 𝑈)𝑥 ⊙ 𝑈)𝑔.

• Then, the inverse Fourier is calculated to get back into the spatial domain: 
𝑋* = 𝑈𝑋

• Then, X’ is sent through the RELU activation function : 3𝑋 = RELU(X’).

• Finally, 3𝑋 is sent through the aggregation function, which updates each nodes 
features based on its neighbors: F = AGG( 3𝑋).

Implementation (Spectral GCN)

• Backpropagation is the next step. A rough gradient is written, but it is 
not quite ready.

• Collect a dataset to test the efficiency of this model in comparison to a 
mode made with PyTorch or Tensorflow.

Future Work (Spectral GCN)

This paper presents two approaches to developing graph neural 
networks (GNNs) using MagmaDNN, a high-performance deep 
learning library designed for heterogeneous computing 
architectures. The approaches being implemented are the spectral 
and spatial methods. Our approaches leverage the parallel 
processing capabilities of MagmaDNN to enable efficient training 
and inference of GNNs on large-scale graphs. Our results 
demonstrate the potential of using MagmaDNN for developing 
high-performance GNN models for a wide range of applications in 
areas such as social network analysis, recommender systems, and 
drug discovery.

Abstract

Introduction

Input
The task of the model is binary classification, which decides whether a link exists (positive link) 
or does not exist (negative link) between two nodes. For that reason, the input is the original 
graph with added negative links.

Implementation (Spatial GCN)

Future Work (Spatial GCN)
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Encoder and Node Embeddings
The number of convolutional layers determines how far node representations are aggregated into 
the source node, therefore, it is limited by the depth of the graph. This simple model has two 
graph convolutional layer and an activation function between them. After processing the graph, 
the encoder produces new node embeddings, which is later used by the decoder to make 
predictions. 

Graph Conv Graph Conv

Decoder
Using the result of the encoder, the decoder computes a dot product of the node representations 
of two nodes on each edge. The new edge features is fed into an activation function to create a 
scalar score on every edge that shows the probability of edge existence.

Node pair 
multiplication Sigmoid Output

The Spatial GCN model uses a citation dataset named Cora, which consists of 2708 scientific 
publications and 5429 links. Each publication in the dataset is described by a dictionary that 
consists of 1433 unique words.

1. Implement the gradient function for the node pair multiplication 
operation to complete the decoder.
2. Add the sigmoid function to finish and start training the model.
3. Compare the result of the model to the GCN models made with 
PyTorch Geometric or DGL.

• Graph neural networks (GNNs) have been successfully applied to a 
wide range of applications, including social network analysis, 
recommendation systems, drug discovery, and traffic prediction, among 
others. MagmaDNN is a high-performance deep learning library 
designed for heterogeneous computing architectures, such as multi-core 
CPUs, GPUs, and FPGAs.

• There are many implementations of GNNs: attention, convolution, lstm, 
and more. The  two models being developed in MagmaDNN are GCNs, 
specifically the spatial and the spectral methods. While the spatial 
method performs node representations aggregation using the mean rule, 
the spectral method transforms the graph signal into the spectral domain, 
performs convolution, then transforms it back into the graph domain. 

• When performing these two methods, a graph, a feature matrix, an 
adjacency matrix, and a degree matrix are needed.
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• The final equation for this model is 
F = 𝑈[𝑈)𝑥	 ⊙ 𝑈) ∑%&'( 𝑤 𝑖 ∗ 𝑇$ 𝐿 𝑥]
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