Implementing MAGMA Tensor Interfaces

 Background MAGMA - Matrix algebra on GPU a performs calculations on GPUs and efficient computations. supports matrix-matrix, matrix-veo scalar-vector, and scalar-matrix op i.e. SGEMM- Single Precision Geomultiplication Tensors Tensors are mathematical data commuti-dimensional arrays of numer 	and Multicore Architecture d multicore CPUs for more ctor, vector-vector, erations eneral Matrix Matrix ntainers that represent rical values
Have important applications in i	machine learning, electro
dynamics, and other fields.	
 > 0-rank tensor (scalar) α > 1-rank (vector) 	> 3-rank $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} \begin{bmatrix} \alpha' \\ \beta' \end{bmatrix}$
	> 4-rank _{[[α β]} [â β]
> 2-rank (matrix) $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$	> 4-rank $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} \hat{\alpha} & \hat{\beta} \\ \hat{\gamma} & \hat{\delta} \end{bmatrix}$ $\begin{bmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{bmatrix} \begin{bmatrix} \tilde{\alpha} & \tilde{\beta} \\ \tilde{\gamma} & \tilde{\delta} \end{bmatrix}$
$[4.5 \ 3.4 \ 2.3 \ 6.7]$ $[3.9]$	$\begin{bmatrix} 1.5 & 2.1 & 5.4 & 9.1 \\ 4.2 & 7.2 & 3.2 & 8.0 \end{bmatrix} \begin{bmatrix} 4.3 \\ 6.7 \\ 1.5 \\ 9.4 \end{bmatrix} = \begin{bmatrix} 114.16 \\ 146.36 \\ 115.56 \\ 117.66 \\ 6.8 \\ 3.9 \end{bmatrix}$ $\begin{bmatrix} 4.2 \\ 4.9 \\ 6.8 \\ 3.9 \end{bmatrix} \begin{bmatrix} 114.16 \\ 146.36 \\ 115.56 \\ 117.66 \\ 63.83 \\ 117.67 \end{bmatrix}$ $\begin{bmatrix} 4.5 & 3.4 & 2.3 & 6.7 \\ 7.9 & 4.2 & 5.1 & 7.9 \end{bmatrix} \begin{bmatrix} 7.4 \\ 1.5 \\ 9.6 \\ 0.5 \end{bmatrix} \end{bmatrix}$
Figure 1: Example of 3-D te	ensor multiplication
 Tensor Multiplication Non-batched <i>n</i>-D tensor multiplication Loop through the batches of <i>A</i> and <i>B</i> and perform (<i>n</i>-1)-D multiplication on the batches. Batched 3D tensor multiplication Initialize 2D array (double pointer) and point to single arrays Each of 1D arrays stores 2D matrix. Allocate memory and compute 2D array without loops. 	
stranspose transposes a 3-D tensor \rightarrow A: m x n x k, and perm = [2,0,1], th A: 2 x 3 x 4 perm = [0, 2, 1] A = [[1 2 3 4; AT: 2 x 4 x 3 5 6 7 8; AT = [[1 5 9; [13 17 21; 9 10 11 12], 26 10; 14 18 22; [13 14 15 16; 37 11; 15 19 23;	en AT: <i>k x m x n.</i> perm = [2, 1, 0] <i>AT:</i> 4 x 3 x 2 <i>AT</i> = [[1 13; [2 14; [3 15; [4 5 17; 6 18; 7 19; 8

Figure 3: Example of 3-D transposition

3 7 11; 15 19 23;

4 8 12], 16 20 24]]

[13 14 15 16;

17 18 19 20;

21 22 23 24]]

