
Futures of Training a JetBot in Virtual
Environments: Unity and Isaac Sim
Students: Ramiah Curry (Morehouse College), Darius Chao (UCSD)
Mentors: Dr. Kwai Wong (UTK)

ImplementationBackground Results

Testing/Training

Unity 3D is a widely-used game development engine,
supporting virtual reality platforms. It offers an assortment of tools
and packages for creating simulations and applications. Among its
standout features is ML-Agents, an open-source plugin integrating
machine learning into Unity projects which we used for this project.
In addition, we also tested out the Perception Package, a synthetic
data generation tool in Unity.

Unity's Perception package was utilized by scripting variations in
background, lighting, camera angles, and object placements via the UI. The
scene included "distractions" in the background with target road signs
scattered throughout.

Using Unity's ML-Agents, we designed a virtual training environment to
simulate our office building hallway. Setting up the ML-Agents package
involved defining learning algorithms and reward systems in C# scripts. During
training, agents interacted with the environment, learning through trial and
error, resulting in improved decision-making and behavior.

Analysis

Acknowledgments
This project was sponsored by the National Science Foundation
through Research Experience for Undergraduates (REU)
award, with additional support from the Joint Institute for
Computational Sciences at University of Tennessee Knoxville.

The graph (left) is the
result of the
cumulative reward
generated from
training the JetBot on
a virtual track in Unity.
The graph (right)
shows the loss
decreasing over time.

Reinforcement learning is not as effective as object
detection for autonomous driving, but with a well-tuned reward
system and sufficient training time, it can work. However,
identifying objects using the camera sensor in reinforcement
learning is challenging and not always accurate. Porting these
models to a JetBot proved difficult as well and was not able to
be completed. On the other hand, the synthetic data
generation part of the project was more successful. The
Perception Package and Replicator generated valuable data
for training a model to run on a real JetBot, streamlining the
data collection process.

Python argument types in
 SemanticsAPI.Get(str, str)
did not match C++ signature:

NVIDIA Omniverse is a platform with all sorts of tools and
software related to 3D modeling and simulations of robotics in
virtual environments. For this project, we focused on exploring the
Isaac Sim toolkit which is known for its capabilities related to
highly-realistic 3D simulations and robotics developments. We
looked into OmniIsaacGym, Isaac Sim’s machine learning library
and Replicator, Isaac Sim’s synthetic data generator.

Object detection
model trained on
Replicator’s synthetic
data (left) and object
detection model
trained on Unity’s
Perception Package
(right). Both are very
accurate.

Isaac Sim's Replicator offers increased customization compared to Unity's
Perception Package but requires more setup time. We utilized both Python
scripts and the UI to configure Replicator and exported annotated images in a
custom format.

For OmniIsaacGym, we employed a basic environment with the JetBot and
a red cube, focusing on object following. Python scripts defined the
environment, reward system, learning algorithms, and functions.

Our goal for this project was to see if we could train JetBots to
drive autonomously within a virtual environment and then port the
trained models to the real JetBots. We also wanted to compare the
two software and figure out the pros and cons of both.

Objective

Unity Perception
Package synthetic
data (left) and its
annotated result
(right).

Isaac Sim Replicator
synthetic data (left)
and its annotated
result after being
passed into Roboflow
(right).

Isaac Sim object
following
environment with
OmniIsaacGym (left)
and Unity corridor
navigation with
ML-Agents Package
(right).

References

Similarly, the loss
graph (left)
decreases as the
JetBot learns over
time in Isaac Sim.
The mean reward
graph (right)
therefore increases
since it learns to do
its task more
effectively.

[1] U. Technologies, “Digital Twins,” Unity, https://unity.com/solutions/digital-twins (accessed Jun. 30, 2023).
[2] “Isaac Sim Introduction,” What Is Isaac Sim? - Omniverse Robotics documentation,
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html (accessed Jun. 30, 2023).
[3] NVIDIA-Omniverse, “Nvidia-Omniverse/omniisaacgymenvs: Reinforcement learning environments for omniverse
isaac gym,” GitHub, https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs/tree/main (accessed Jun. 30, 2023).
[4] A. Juliani et al., “Unity: A general platform for intelligent agents,” arXiv.org, https://arxiv.org/abs/1809.02627
(accessed Jun. 30, 2023).
[5]“Core [Omni.Isaac.Core].” Core [Omni.Isaac.Core] - Isaac_sim 2022.2.1-Beta.29 Documentation, 17 Mar. 2023,
docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.core/docs/index.html?highlight=seman#module-o
mni.isaac.core.objects.

