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ImplementationBackground Results

Testing/Training

Unity 3D is a widely-used game development engine, 
supporting virtual reality platforms. It offers an assortment of tools 
and packages for creating simulations and applications. Among its 
standout features is ML-Agents, an open-source plugin integrating 
machine learning into Unity projects which we used for this project. 
In addition, we also tested out the Perception Package, a synthetic 
data generation tool in Unity.

Unity's Perception package was utilized by scripting variations in 
background, lighting, camera angles, and object placements via the UI. The 
scene included "distractions" in the background with target road signs 
scattered throughout.

Using Unity's ML-Agents, we designed a virtual training environment to 
simulate our office building hallway. Setting up the ML-Agents package 
involved defining learning algorithms and reward systems in C# scripts. During 
training, agents interacted with the environment, learning through trial and 
error, resulting in improved decision-making and behavior.
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The graph (left) is the 
result of the 
cumulative reward 
generated from 
training the JetBot on 
a virtual track in Unity. 
The graph (right) 
shows the loss 
decreasing over time.

Reinforcement learning is not as effective as object 
detection for autonomous driving, but with a well-tuned reward 
system and sufficient training time, it can work. However, 
identifying objects using the camera sensor in reinforcement 
learning is challenging and not always accurate. Porting these 
models to a JetBot proved difficult as well and was not able to 
be completed. On the other hand, the synthetic data 
generation part of the project was more successful. The 
Perception Package and Replicator generated valuable data 
for training a model to run on a real JetBot, streamlining the 
data collection process.

Python argument types in
    SemanticsAPI.Get(str, str)
did not match C++ signature:

NVIDIA Omniverse is a platform with all sorts of tools and 
software related to 3D modeling and simulations of robotics in 
virtual environments. For this project, we focused on exploring the 
Isaac Sim toolkit which is known for its capabilities related to 
highly-realistic 3D simulations and robotics developments. We 
looked into OmniIsaacGym, Isaac Sim’s machine learning library 
and Replicator, Isaac Sim’s synthetic data generator. 

Object detection 
model trained on 
Replicator’s synthetic 
data (left) and object 
detection model 
trained on Unity’s 
Perception Package 
(right). Both are very 
accurate.

Isaac Sim's Replicator offers increased customization compared to Unity's 
Perception Package but requires more setup time. We utilized both Python 
scripts and the UI to configure Replicator and exported annotated images in a 
custom format.

For OmniIsaacGym, we employed a basic environment with the JetBot and 
a red cube, focusing on object following. Python scripts defined the 
environment, reward system, learning algorithms, and functions.

Our goal for this project was to see if we could train JetBots to 
drive autonomously within a virtual environment and then port the 
trained models to the real JetBots. We also wanted to compare the 
two software and figure out the pros and cons of both.

Objective

Unity Perception 
Package synthetic 
data (left) and its 
annotated result 
(right).

Isaac Sim Replicator 
synthetic data (left) 
and its annotated 
result after being 
passed into Roboflow 
(right).

Isaac Sim object 
following 
environment with 
OmniIsaacGym (left) 
and Unity corridor 
navigation with 
ML-Agents Package 
(right).
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Similarly, the loss 
graph (left) 
decreases as the 
JetBot learns over 
time in Isaac Sim. 
The mean reward 
graph (right) 
therefore increases 
since it learns to do 
its task more 
effectively.
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